1
|
Taylor JW, Chi AS and Cahill DP: Tailored
therapy in diffuse gliomas: Using molecular classifiers to optimize
clinical management. Oncology (Williston Park). 27:504–514.
2013.PubMed/NCBI
|
2
|
Van Meir EG, Hadjipanayis CG, Norden AD,
et al: Exciting new advances in neuro-oncology: The avenue to a
cure for malignant glioma. CA Cancer J Clin. 60:166–193. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Alves TR, Lima FR, Kahn SA, et al:
Glioblastoma cells: A heterogeneous and fatal tumor interacting
with the parenchyma. Life Sci. 89:532–539. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Munson J, Bonner M, Fried L, et al:
Identifying new small molecule anti-invasive compounds for glioma
treatment. Cell Cycle. 12:2200–2209. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Westermarck J and Kähäri VM: Regulation of
matrix metalloproteinase expression in tumor invasion. FASEB J.
13:781–792. 1999.PubMed/NCBI
|
6
|
Kleiner DE and Stetler-Stevenson WG:
Matrix metalloproteinases and metastasis. Cancer Chemother
Pharmacol. 43(Suppl): S42–S51. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Forsyth PA, Wong H, Lainq TD, et al:
Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix
metalloproteinase-1 (MT1-MMP) are involved in different aspects of
the pathophysiology of malignant gliomas. Br J Cancer.
79:1828–1835. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hall A: Rho GTPases and the actin
cytoskeleton. Science. 279:509–514. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nutt CL, Mani DR, Betensky RA, et al: Gene
expression-based classification of malignant gliomas correlates
better with survival than histological classification. Cancer Res.
63:1602–1607. 2003.PubMed/NCBI
|
11
|
Forget MA, Desrosiers RR, Del M, Moumdjian
R, Shedid D, Berthelet F and Béliveau R: The expression of rho
proteins decreases with human brain tumor progression: Potential
tumor markers. Clin Exp Metastasis. 19:9–15. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Malchinkhuu E, Sato K, Maehama T, Mogi C,
Tomura H, Ishiuchi S, Yoshimoto Y, Kurose H and Okajima F: S1P (2)
receptors mediate inhibition of glioma cell migration through Rho
signaling pathways independent of PTEN. Biochem Biophys Res Commun.
366:963–968. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Goldberg L and Kloog Y: A Ras inhibitor
tilts the balance between Rac and Rho and blocks
phosphatidylinositol 3-kinasedependent glioblastoma cell migration.
Cancer Res. 66:11709–11717. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jang M, Cai L, Udeani GO, Slowing KV,
Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta
RG, et al: Cancer chemopreventive activity of resveratrol, a
natural product derived from grapes. Science. 275:218–220. 1997.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Baur JA and Sinclair DA: Therapeutic
potential of resveratrol: The in vivo evidence. Nat Rev Drug
Discov. 5:493–506. 2006. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Brakenhielm E, Cao R and Cao Y:
Suppression of angiogenesis, tumour growth and wound healing by
resveratrol, a natural compound in red wine and grapes. FASEB J.
15:1798–1800. 2001.PubMed/NCBI
|
17
|
Zhang W, Fei Z, Zhen H, Zhang JN and Zhang
X: Resveratrol inhibits cell growth and induces apoptosis of rat C6
glioma cells. J Neurooncol. 81:231–240. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lin H, Xiong W, Zhang X, Liu B, Zhang W,
Zhang Y, Cheng J and Huang H: Notch-1 activation-dependent p53
restoration contributes to resveratrol-induced apoptosis in
glioblastoma cells. Oncol Rep. 26:925–930. 2011.PubMed/NCBI
|
19
|
Philip S, Bulbule A and Kundu GC: Matrix
metalloproteinase-2: Mechanism and regulation of NF-kappaB-mediated
activation and its role in cell motility and ECM-invasion.
Glycoconj J. 21:429–441. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Matsuoka T, Yashiro M, Kato Y, Shinto O,
Kashiwagi S and Hirakawa K: RhoA/ROCK signaling mediates plasticity
of scirrhous gastric carcinoma motility. Clin Exp Metastasis.
28:627–636. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Giese A, Bjerkvig R, Berens ME and
Westphal M: Cost of migration: invasion of malignant gliomas and
implications for treatment. J Clin Oncol. 21:1624–1636. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu H, Liang X, Fang Y, Qin X, Zhang Y and
Liu J: Resveratrol inhibits hypoxia-induced metastasis potential
enhancement by restricting hypoxia-induced factor-1 alpha
expression in colon carcinoma cells. Biomed Pharmacother.
62:613–621. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kundu JK and Surh YJ: Cancer
chemopreventive and therapeutic potential of resveratrol:
Mechanistic perspectives. Cancer Lett. 269:243–261. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Rodrigue CM, Porteu F, Navarro N, Bruyneel
E, Bracke M, Romeo PH, Gespach C and Garel MC: The cancer
chemopreventive agent resveratrol induces tensin, a cell-matrix
adhesion protein with signaling and antitumor activities. Oncogene.
24:3274–3284. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
EI-Mowafy AM, EI-Mesery ME, Salem HA,
Al-Gayyar MM and Darweish MM: Prominent chemopreventive and
chemoenhancing effects for resveratrol: Unraveling molecular
targets and the role of C-reactive protein. Chemotherapy. 56:60–65.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang W, Murao K, Zhang X, Matsumoto K,
Diah S, Okada M, Miyake K, Kawai N, Fei Z and Tamiya T: Resveratrol
represses YKL-40 expression in human glioma U87 cells. BMC Cancer.
10:5932010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang H, Lin H, Zhang X and Li J:
Resveratrol reverses temozolomide resistance by downregulation of
MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway.
Onclo Rep. 27:2050–2056. 2012.
|
28
|
Libra M, Scalisi A, Vella N, Clementi S,
Sorio R, Stivala F, Spandidos DA and Mazzarino C: Uterine cervical
carcinoma: Role of matrix metalloproteinases (review). Int J Oncol.
34:897–903. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rao JS, Steck PA, Mohanam S,
Stetler-Stevenson WG, Liotta LA and Sawaya R: Elevated levels of
M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res.
53(10 Suppl): 2208–2211. 1993.PubMed/NCBI
|
30
|
Gabelloni P, Da Pozzo E, Bendinelli S,
Costa B, Nuti E, Casalini F, Orlandini E, Da Settimo F, Rossello A
and Martini C: Inhibition of metalloproteinases derived from
tumours: New insights in the treatment of human glioblastoma.
Neurosci. 168:514–522. 2010. View Article : Google Scholar
|
31
|
Kim SY, Lee EJ, Woo MS, Jung JS, Hyun JW,
Min SW, Kim DH and Kim HS: Inhibition of matrix metalloproteinase-9
gene expression by an isoflavone metabolite, irisolidone in U87MG
human astroglioma cells. Biochem Biophys Res Commun. 366:493–499.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gagliano N, Moscheni C, Torri C, Magnani
I, Bertelli AA and Gioia M: Effect of resveratrol on matrix
metalloproteinase-2 (MMP-2) and secreted protein acidic and rich in
cysteine (SPARC) on human cultured glioblastoma cells. Biomed
Pharmacother. 59:359–364. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ryu J, Ku BM, Lee YK, Jeong JY, Kang S,
Choi J, Yang Y, Lee DH, Roh GS, Kim HJ, et al: Resveratrol reduces
TNF-α-induced U373MG human glioma cell invasion through regulating
NF-κB activation and uPA/uPAR expression. Anticaner Res.
31:4223–4230. 2011.
|
34
|
Guo J, Fan KX, Xie L, Xiao JJ, Chen K, Hui
LN and Xu ZH: Effect and prognostic significance of the KAI1 gene
in human gastric carcinoma. Oncol Lett. 10:2035–2042.
2015.PubMed/NCBI
|
35
|
Nobes CD and Hall A: Rho, rac and cdc42
GTPases regulate the assembly of multimolecular focal complexes
associated with actin stress fibers, lamellipodia and filopodia.
Cell. 81:53–62. 1995. View Article : Google Scholar : PubMed/NCBI
|
36
|
Khalil BD, Hanna S, Saykali BA, El-Sitt S,
Nasrallah A, Marston D, El-Sabban M, Hahn KM, Symons M and El-Sibai
M: The regulation of RhoA at focal adhesions by StarD13 is
important for astrocytoma cell motility. Exp Cell Res. 321:109–122.
2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Salhia B, Rutten F, Nakada M, Beaudry C,
Berens M, Kwan A and Rutka JT: Inhibition of Rho-kinase affects
astrocytoma morphology, motility and invasion through activation of
Rac1. Cancer Res. 65:8792–8800. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cicha I, Regler M, Urschel K,
Goppelt-Struebe M, Daniel WG and Garlichs CD: Resveratrol inhibits
monocytic cell chemotaxis to MCP-1 and prevents spontaneous
endothelial cell migration through Rho kinase-dependent mechanism.
J Atheroscler Thromb. 18:1031–1042. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ispanovic E, Serio D and Haas TL: Cdc42
and RhoA have opposing roles in regulating membrane type 1-matrix
metalloproteinase localization and matrix metalloproteinase-2
activation. Am J Physiol Cell Physiol. 295:C600–C610. 2008.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Fromigué O, Hamidouche Z and Marie PJ:
Blockade of the RhoA-JNK-c-Jun-MMP2 cascade by atorvastatin reduces
osteosarcoma cell invasion. J Biol Chem. 283:30549–30556. 2008.
View Article : Google Scholar : PubMed/NCBI
|