1
|
Reilly JT: Class III receptor tyrosine
kinases: Role in leukaemogenesis. Br J Haematol. 116:744–757. 2002.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Heldin CH, Ostman A and Rönnstrand L:
Signal transduction via platelet-derived growth factor receptors.
Biochim Biophys Acta. 1378:F79–F113. 1998.PubMed/NCBI
|
3
|
Donovan J, Shiwen X, Norman J and Abraham
D: Platelet-derived growth factor alpha and beta receptors have
overlapping functional activities towards fibroblasts. Fibrogenesis
Tissue Repair. 6:102013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Demoulin JB, Enarsson M, Larsson J,
Essaghir A, Heldin CH and Forsberg-Nilsson K: The gene expression
profile of PDGF-treated neural stem cells corresponds to partially
differentiated neurons and glia. Growth Factors. 24:184–196. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Steensma DP, Tefferi A and Li CY: Splenic
histopathological patterns in chronic myelomonocytic leukemia with
clinical correlations: reinforcement of the heterogeneity of the
syndrome. Leuk Res. 27:775–782. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Emanuel PD: Juvenile myelomonocytic
leukemia and chronic myelomonocytic leukemia. Leukemia.
22:1335–1342. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vardiman JW: The World Health Organization
(WHO) classification of tumors of the hematopoietic and lymphoid
tissues: an overview with emphasis on the myeloid neoplasms. Chem
Biol Interact. 184:16–20. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Finelli P, Giardino D, Rizzi N, Buiatiotis
S, Virduci T, Franzin A, Losa M and Larizza L: Non-random trisomies
of chromosomes 5, 8 and 12 in the prolactinoma sub-type of
pituitary adenomas: conventional cytogenetics and interphase FISH
study. Int J Cancer. 86:344–350. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Verma RS and Dosik H: The value of reverse
banding in detecting bone marrow chromosomal abnormalities:
Translocation between chromosomes 1, 9, and 22 in a case of chronic
myelogenous leukemia (CML). Am J Hematol. 3:171–175. 1977.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Claussen U, Michel S, Mühlig P, Westermann
M, Grummt UW, Kromeyer-Hauschild K and Liehr T: Demystifying
chromosome preparation and the implications for the concept of
chromosome condensation during mitosis. Cytogenet Genome Res.
98:136–146. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shaffer LG, Slovak ML and Campbell LJ:
ISCN 2009: An International System for Human Cytogenetic
Nomenclature (2009): Recommendations of the International Standing
Committee on Human Cytogenetic Nomenclature (1st). Switzerland: S
Karger AG. 2009.
|
12
|
Guo B, Da WM, Han XP, Zhao DD, Jin HJ,
Wang K and Tang JY: Study of BCR-ABL gene rearrangement by
dual-color-dual-fusion fluorescence in situ hybridization on
acute lymphoblastic leukemia patients. Chin J Lab Med. 10:902–905.
2006.
|
13
|
Huang W, Cao Q and Lu Y: Detection on
BCR-ABL fusion gene in Ph1 chromosome positive leukemia by ‘nested’
retrotranscriptase/polymerase chain reaction. Chin J Hema.
13:183–186. 1992.(In Chinese).
|
14
|
Abe A, Emi N, Tanimoto M, Terasaki H,
Marunouchi T and Saito H: Fusion of the platelet-derived growth
factor receptor β to a novel gene CEV14 in acute myelogenous
leukemia after clonal evolution. Blood. 90:4271–4277.
1997.PubMed/NCBI
|
15
|
Levine RL, Wadleigh M, Sternberg DW,
Wlodarska I, Galinsky I, Stone RM, DeAngelo DJ, Gilliland DG and
Cools J: KIAA1509 is a novel PDGFRB fusion partner in
imatinib-responsive myeloproliferative disease associated with a
t(5;14)(q33;q32). Leukemia. 19:27–30. 2005.PubMed/NCBI
|
16
|
Vizmanos JL, Novo FJ, Román JP, Baxter EJ,
Lahortiga I, Larráyoz MJ, Odero MD, Giraldo P, Calasanz MJ and
Cross NC: NIN, a gene encoding a CEP110-like centrosomal protein,
is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an
imatinib-responsive myeloproliferative disorder. Cancer Res.
64:2673–2676. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bain BJ: Leukaemia Diagnosis (4th).
Chichester: Wiley-Blackwell. 68–73. 2010.
|
18
|
Provan A, Baglin T, Dokal I and de Vos J:
Myelodysplasia. Oxford Handbook of Clinical Haematology (3rd).
(Oxford). Oxford University Press. 244–247. 2009.
|
19
|
Walz C, Metzgeroth G, Schoch C, Haferlach
T, Hehlmann R, Hochhaus A, Cross NCP and Reiter A: Characterization
of two new imatinib-responsive fusion genes generated by disruption
of PDGFRB in eosinophilia-associated chronic myeloproliferative
disorders. Blood. 108:6672006.
|
20
|
Apperley JF, Gardembas M, Melo JV,
Russell-Jones R, Bain BJ, Baxter EJ, Chase A, Chessells JM,
Colombat M, Dearden CE, et al: Response to imatinib mesylate in
patients with chronic myeloproliferative diseases with
rearrangements of the platelet-derived growth factor receptor beta.
N Engl J Med. 347:481–487. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Golub TR, Barker GF, Lovett M and
Gilliland DG: Fusion of PDGF receptor beta to a novel ets-like
gene, tel, in chronic myelomonocytic leukemia with t(5;12)
chromosomal translocation. Cell. 77:307–316. 1994. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ritchie KA, Aprikyan AA, Bowen-Pope DF,
Norby-Slycord CJ, Conyers S, Bartelmez S, Sitnicka EH and Hickstein
DD: The Tel-PDGFRbeta fusion gene produces a chronic
myeloproliferative syndrome in transgenic mice. Leukemia.
13:1790–1803. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hélias C, Leymarie V, Entz-Werle N,
Falkenrodt A, Eyer D, Costa JA, Cherif D, Lutz P and Lessard M:
Translocation t(5;14)(q35;q32) in three cases of childhood T cell
acute lymphoblastic leukemia: A new recurring and cryptic
abnormality. Leukemia. 16:7–12. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bernard OA, Busson-LeConiat M, Ballerini
P, et al: A new recurrent and specific cryptic translocation,
t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene
in T acute lymphoblastic leukemia. Leukemia. 15:1495–1504. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Haider S, Matsumoto R, Kurosawa N, et al:
Molecular characterization of a novel translocation
t(5;14)(q21;q32) in a patient with congenital abnormalities. J Hum
Genet. 51:335–340. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Su XY, Della-Valle V, Andre-Schmutz I, et
al: HOX11L2/TLX3 is transcriptionally activated through T-cell
regulatory elements downstream of BCL11B as a result of the
t(5;14)(q35;q32). Blood. 108:4198–4201. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Berger R, Dastugue N, Busson M, Van Den A
kker J, Pérot C, Ballerini P, Hagemeijer A, Michaux L, Charrin C,
Pages MP, et al: Groupe Français de Cytogénétique Hématologique
(GFCH): t(5;14)/HOX11L2-positive T-cell acute lymphoblastic
leukemia. A collaborative study of the Groupe Français de
Cytogénétique Hématologique (GFCH). Leukemia. 17:1851–1857. 2003.
View Article : Google Scholar : PubMed/NCBI
|
28
|
van Zutven LJ, Velthuizen SC,
Wolvers-Tettero IL, van Dongen JJ, Poulsen TS, MacLeod RA, Beverloo
HB and Langerak AW: Two dual-color split signal fluorescence in
situ hybridization assays to detect t(5;14) involving HOX11L2
or CSX in T-cell acute lymphoblastic leukemia. Haematologica.
89:671–678. 2004.PubMed/NCBI
|
29
|
Nagel S, Scherr M, Kel A, Hornischer K,
Crawford GE, Kaufmann M, Meyer C, Drexler HG and MacLeod RA:
Activation of TLX3 and NKX2–5 in t(5;14)(q35;q32) T-cell acute
lymphoblastic leukemia by remote 3′-BCL11B enhancers and
coregulation by PU.1 and HMGA1. Cancer Res. 67:1461–1471. 2007.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cavé H, Suciu S, Preudhomme C, Poppe B,
Robert A, Uyttebroeck A, Malet M, Boutard P, Benoit Y, Mauvieux L,
et al: EORTC-CLG: Clinical significance of HOX11L2 expression
linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL
fusion in childhood T-cell malignancies: Results of EORTC studies
58881 and 58951. Blood. 103:442–450. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shi HT, Zhou F, Hou J, Wei W, Guo LP and
Zhang YX: A case of T-cell acute lymphpoblastic leukemia with
translocation t(5;14) (q33; q32). J Chin Hematol. 06:8002013.(In
Chinese).
|
32
|
Wilkinson K, Velloso ER, Lopes LF, Lee C,
Aster JC, Shipp MA and Aguiar RC: Cloning of the t(1;5)(q23;q33) in
a myeloproliferative disorder associated with eosinophilia:
Involvement of PDGFRB and response to imatinib. Blood.
102:4187–4190. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Baxter EJ, Kulkarni S, Vizmanos JL, Jaju
R, Martinelli G, Testoni N, Hughes G, Salamanchuk Z, Calasanz MJ,
Lahortiga I, et al: Novel translocations that disrupt the
platelet-derived growth factor receptor beta (PDGFRB) gene in
BCR-ABL-negative chronic myeloproliferative disorders. Br J
Haematol. 120:251–256. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cross NC and Reiter A: Tyrosine kinase
fusion genes in chronic myeloproliferative diseases. Leukemia.
16:1207–1212. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Salaroli A, Loglisci G, Serrao A, Alimena
G and Breccia M: Fasting glucose level reduction induced by
imatinib in chronic myeloproliferative disease with TEL-PDGFRβ
rearrangement and type 1 diabetes. Ann Hematol. 91:1823–1824. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Gallagher G, Horsman DE, Tsang P and
Forrest DL: Fusion of PRKG2 and SPTBN1 to the platelet-derived
growth factor receptor beta gene (PDGFRB) in imatinib-responsive
atypical myeloproliferative disorders. Cancer Genet Cytogenet.
181:46–51. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tanaka MF, Kantarjian H, Cortes J, Ohanian
M and Jabbour E: Treatment options for chronic myeloid leukemia.
Expert Opin Pharmaco. 13:815–828. 2012. View Article : Google Scholar
|