1
|
Linabery AM and Ross JA: Trends in
childhood cancer incidence in the U.S. (1992–2004). Cancer.
112:416–432. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Barth M, Raetz E and Cairo MS: The future
role of monoclonal antibody therapy in childhood acute leukaemias.
Br J Haematol. 159:3–17. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gorman MF, Ji L, Ko RH, et al: Outcome for
children treated for relapsed or refractory acute myelogenous
leukemia (rAML): A Therapeutic Advances in Childhood Leukemia
(TACL) Consortium study. Pediatr Blood Cancer. 55:421–429. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Huntly BJ and Gilliland DG: Leukaemia stem
cells and the evolution of cancer-stem-cell research. Nat Rev
Cancer. 5:311–321. 2005. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hauswirth AW, Florian S, Printz D, Sotlar
K, Krauth MT, Fritsch G, Schernthaner GH, Wacheck V, Selzer E,
Sperr WR and Valent P: Expression of the target receptor CD33 in
CD34+/CD38−/CD123+ AML stem cells.
Eur J Clin Invest. 37:73–82. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jin L, Hope KJ, Zhai Q, Smadja-Joffe F and
Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic
stem cells. Nat Med. 12:1167–1174. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jordan CT, Upchurch D, Szilvassy SJ,
Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B,
Rizzieri DA, et al: The interleukin-3 receptor alpha chain is a
unique marker for human acute myelogenous leukemia stem cells.
Leukemia. 14:1777–1784. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Toren A, Bielorai B, Jacob-Hirsch J,
Fisher T, Kreiser D, Moran O, Zeligson S, Givol D, Yitzhaky A,
Itskovitz-Eldor J, et al: CD133-positive hematopoietic stem cell
‘stemness’ genes contain many genes mutated or abnormally expressed
in leukemia. Stem Cells. 23:1142–1153. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Saito Y, Kitamura H, Hijikata A, et al:
Identification of therapeutic targets for quiescent,
chemotherapy-resistant human leukemia stem cells. Sci Transl Med.
2:17ra92010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Majeti R, Chao MP, Alizadeh AA, Pang WW,
Jaiswal S, Gibbs KD Jr, van Rooijen N and Weissman IL: CD47 is an
adverse prognostic factor and therapeutic antibody target on human
acute myeloid leukemia stem cells. Cell. 138:286–299. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
van Rhenen A, van Dongen GA, Kelder A,
Rombouts EJ, Feller N, Moshaver B, Stigter-van Walsum M, Zweegman
S, Ossenkoppele GJ and Jan Schuurhuis G: The novel AML stem cell
associated antigen CLL-1 aids in discrimination between normal and
leukemic stem cells. Blood. 110:2659–2666. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Taussig DC, Pearce DJ, Simpson C,
Rohatiner AZ, Lister TA, Kelly G, Luongo JL, Danet-Desnoyers GA and
Bonnet D: Hematopoietic stem cells express multiple myeloid
markers: Implications for the origin and targeted therapy of acute
myeloid leukemia. Blood. 106:4086–4092. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yin AH, Miraglia S, Zanjani ED,
Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J and Buck
DW: AC133, a novel marker for human hematopoietic stem and
progenitor cells. Blood. 90:5002–5012. 1997.PubMed/NCBI
|
15
|
Hess DA, Wirthlin L, Craft TP, Herrbrich
PE, Hohm SA, Lahey R, Eades WC, Creer MH and Nolta JA: Selection
based on CD133 and high aldehyde dehydrogenase activity isolates
long-term reconstituting human hematopoietic stem cells. Blood.
107:2162–2169. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Scott AM, Wolchok JD and Old LJ: Antibody
therapy of cancer. Nat Rev Cancer. 12:278–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bennett JM, Catovsky D, Daniel MT,
Flandrin G, Galton DA, Gralnick HR and Sultan C: Proposals for the
classification of the acute leukaemias. French-American-British
(FAB) co-operative group. Br J Haematol. 33:451–458. 1976.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Heerema-McKenney A and Arber DA: Acute
myeloid leukemia. Hematol Oncol Clin North Am. 23:633–654. 2009.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Human Experimentation. Code of Ethics of
the World Medical Association (Declaration of Helsinki). Can Med
Assoc J. 91:6191964.PubMed/NCBI
|
20
|
Paietta E: Expression of cell-surface
antigens in acute promyelocytic leukaemia. Best Pract Res Clin
Haematol. 16:369–385. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Beckman RA, Weiner LM and Davis HM:
Antibody constructs in cancer therapy: Protein engineering
strategies to improve exposure in solid tumors. Cancer.
109:170–179. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Laszlo GS, Estey EH and Walter RB: The
past and future of CD33 as therapeutic target in acute myeloid
leukemia. Blood Rev. 28:143–153. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pizzitola I, Anjos-Afonso F,
Rouault-Pierre K, Lassailly F, Tettamanti S, Spinelli O, Biondi A,
Biagi E and Bonnet D: Chimeric antigen receptors against CD33/CD123
antigens efficiently target primary acute myeloid leukemia cells
in vivo. Leukemia. 28:1596–1605. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dutour A, Marin V, Pizzitola I,
Valsesia-Wittmann S, Lee D, Yvon E, Finney H, Lawson A, Brenner M,
Biondi A, et al: In vitro and in vivo antitumor
effect of anti-CD33 chimeric receptor-expressing EBV-CTL against
CD33 acute myeloid leukemia. Adv Hematol. 2012:6830652012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Laszlo GS, Gudgeon CJ, Harrington KH,
Dell'Aringa J, Newhall KJ, Means GD, Sinclair AM, Kischel R,
Frankel SR and Walter RB: Cellular determinants for preclinical
activity of a novel CD33/CD3 bispecific T-cell engager (BiTE)
antibody, AMG 330, against human AML. Blood. 123:554–561. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kung Sutherland MS, Walter RB, Jeffrey SC,
Burke PJ, Yu C, Kostner H, Stone I, Ryan MC, Sussman D, Lyon RP, et
al: SGN-CD33A: A novel CD33-targeting antibody-drug conjugate using
a pyrrolobenzodiazepine dimer is active in models of drug-resistant
AML. Blood. 122:1455–1463. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Castaigne S, Pautas C, Terré C, Raffoux E,
Bordessoule D, Bastie JN, Legrand O, Thomas X, Turlure P, Reman O,
et al: Acute Leukemia French Association: Effect of gemtuzumab
ozogamicin on survival of adult patients with de-novo acute
myeloid leukaemia (ALFA-0701): A randomised, open-label, phase 3
study. Lancet. 379:1508–1516. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Burnett AK, Russell NH, Hills RK, Kell J,
Freeman S, Kjeldsen L, Hunter AE, Yin J, Craddock CF, Dufva IH, et
al: Addition of gemtuzumab ozogamicin to induction chemotherapy
improves survival in older patients with acute myeloid leukemia. J
Clin Oncol. 30:3924–3931. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Du X, Ho M and Pastan I: New immunotoxins
targeting CD123, a stem cell antigen on acute myeloid leukemia
cells. J Immunother. 30:607–613. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Testa U, Fossati C, Samoggia P, Masciulli
R, et al: Expression of growth factor receptors in unilineage
differentiation culture of purified hematopoietic progenitors.
Blood. 88:3391–3406. 1996.PubMed/NCBI
|
31
|
Busfield SJ, Biondo M, Wong M, Ramshaw HS,
Lee EM, Ghosh S, Braley H, Panousis C, Roberts AW, He SZ, et al:
Targeting of acute myeloid leukemia in vitro and in
vivo with an anti-CD123 mAb engineered for optimal ADCC.
Leukemia. 28:2213–2221. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mahnke YD, Brodie TM, Sallusto F, Roederer
M and Lugli E: The who's who of T-cell differentiation: Human
memory T-cell subsets. Eur J Immunol. 43:2797–2809. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Peichev M, Naiyer AJ, Pereira D, Zhu Z,
Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA and Rafii
S: Expression of VEGFR-2 and AC133 by circulating human CD34(+)
cells identifies a population of functional endothelial precursors.
Blood. 95:952–958. 2000.PubMed/NCBI
|
34
|
Pfenninger CV, Roschupkina T, Hertwig F,
Kottwitz D, Englund E, Bengzon J, Jacobsen SE and Nuber UA: CD133
is not present on neurogenic astrocytes in the adult subventricular
zone, but on embryonic neural stem cells, ependymal cells, and
glioblastoma cells. Cancer Res. 67:5727–5736. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Miraglia S, Godfrey W, Yin AH, Atkins K,
Warnke R, Holden JT, Bray RA, Waller EK and Buck DW: A novel
five-transmembrane hematopoietic stem cell antigen: Isolation,
characterization, and molecular cloning. Blood. 90:5013–5021.
1997.PubMed/NCBI
|
36
|
van Gosliga D, Schepers H, Rizo A, van der
Kolk D, Vellenga E and Schuringa JJ: Establishing long-term
cultures with self-renewing acute myeloid leukemia stem/progenitor
cells. Exp Hematol. 35:1538–1549. 2007. View Article : Google Scholar : PubMed/NCBI
|