1
|
Barbarin A, Seite P, Godet J, Bensalma S,
Muller JM and Chadeneau C: Atypical nuclear localization of VIP
receptors in glioma cell lines and patients. Biochem Biophys Res
Commun. 454:524–530. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Malone HR and Bruce JN: Editorial: laser
interstitial thermal therapy: an effective treatment for focally
recurrent high grade glioma. Neurosurg Focus. 37:E22014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wolking S, Lerche H and Dihne M: Episodic
itch in a case of spinal glioma. BMC Neurol. 13:1242013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ostrom QT, Gittleman H, Farah P, Ondracek
A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C and Barnholtz-Sloan JS:
CBTRUS statistical report: Primary brain and central nervous system
tumors diagnosed in the United States in 2006–2010. Neuro Oncol.
15(Suppl 2): ii1–ii56. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chakrabarti I, Cockburn M, Cozen W, Wang
YP and Preston-Martin S: A population-based description of
glioblastoma multiforme in Los Angeles County, 1974–1999. Cancer.
104:2798–2806. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Woehrer A, Bauchet L and Barnholtz-Sloan
JS: Glioblastoma survival: Has it improved? Evidence from
population-based studies. Curr Opin Neurol. 27:666–674.
2014.PubMed/NCBI
|
7
|
Yabroff KR, Harlan L, Zeruto C, Abrams J
and Mann B: Patterns of care and survival for patients with
glioblastoma multiforme diagnosed during 2006. Neuro Oncol.
14:351–359. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: European Organisation for Research and Treatment of
Cancer Brain Tumor and Radiotherapy Groups; National Cancer
Institute of Canada Clinical Trials Group: Radiotherapy plus
concomitant and adjuvant temozolomide for glioblastoma. N Engl J
Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui
KM and Lam PY: Human bone marrow-derived mesenchymal stem cells
suppress human glioma growth through inhibition of angiogenesis.
Stem Cells. 31:146–155. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hu Y, Cheng P, Xue YX and Liu YH: Glioma
cells promote the expression of vascular cell adhesion molecule-1
on bone marrow-derived mesenchymal stem cells: A possible mechanism
for their tropism toward gliomas. J Mol Neurosci. 48:127–135. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Nakamura K, Ito Y, Kawano Y, Kurozumi K,
Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y and Hamada H:
Antitumor effect of genetically engineered mesenchymal stem cells
in a rat glioma model. Gene Ther. 11:1155–1164. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nakamizo A, Marini F, Amano T, Khan A,
Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, et
al: Human bone marrow-derived mesenchymal stem cells in the
treatment of gliomas. Cancer Res. 65:3307–3318. 2005.PubMed/NCBI
|
13
|
Bang OY, Lee JS, Lee PH and Lee G:
Autologous mesenchymal stem cell transplantation in stroke
patients. Ann Neurol. 57:874–882. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Karussis D, Kassis I, Kurkalli BG and
Slavin S: Immunomodulation and neuroprotection with mesenchymal
bone marrow stem cells (MSCs): A proposed treatment for multiple
sclerosis and other neuroimmunological/neurodegenerative diseases.
J Neurol Sci. 265:131–135. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu H, Honmou O, Harada K, Nakamura K,
Houkin K, Hamada H and Kocsis JD: Neuroprotection by PlGF
gene-modified human mesenchymal stem cells after cerebral
ischaemia. Brain. 129:2734–2745. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Caplan AI and Bruder SP: Mesenchymal stem
cells: Building blocks for molecular medicine in the 21st century.
Trends Mol Med. 7:259–264. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Colter DC, Class R, DiGirolamo CM and
Prockop DJ: Rapid expansion of recycling stem cells in cultures of
plastic-adherent cells from human bone marrow. Proc Natl Acad Sci
USA. 97:3213–3218. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu X, Hu J, Zhou L, Mao Y, Yang B, Gao L,
Xie R, Xu F, Zhang D, Liu J and Zhu J: In vivo tracking of
superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem
cell tropism to malignant gliomas using magnetic resonance imaging.
Laboratory investigation. J Neurosurg. 108:320–329. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Schichor C, Birnbaum T, Etminan N, Schnell
O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC and
Goldbrunner R: Vascular endothelial growth factor A contributes to
glioma-induced migration of human marrow stromal cells (hMSC). Exp
Neurol. 199:301–310. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cheng P, Gao ZQ, Liu YH and Xue YX:
Platelet-derived growth factor BB promotes the migration of bone
marrow-derived mesenchymal stem cells towards C6 glioma and
up-regulates the expression of intracellular adhesion molecule-1.
Neurosci Lett. 451:52–56. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hata N, Shinojima N, Gumin J, Yong R,
Marini F, Andreeff M and Lang FF: Platelet-derived growth factor BB
mediates the tropism of human mesenchymal stem cells for malignant
gliomas. Neurosurgery. 66:144–157. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ozaki Y, Nishimura M, Sekiya K, Suehiro F,
Kanawa M, Nikawa H, Hamada T and Kato Y: Comprehensive analysis of
chemotactic factors for bone marrow mesenchymal stem cells. Stem
Cells Dev. 16:119–129. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vicente-Manzanares M and Horwitz AR: Cell
migration: An overview. Methods Mol Biol. 769:1–24. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Misra S, Heldin P, Hascall VC, Karamanos
NK, Skandalis SS, Markwald RR and Ghatak S: Hyaluronan-CD44
interactions as potential targets for cancer therapy. FEBS J.
278:1429–1443. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lisignoli G, Cristino S, Piacentini A,
Cavallo C, Caplan AI and Facchini A: Hyaluronan-based polymer
scaffold modulates the expression of inflammatory and degradative
factors in mesenchymal stem cells: Involvement of Cd44 and Cd54. J
Cell Physiol. 207:364–373. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Schweizer PA, Krause U, Becker R,
Seckinger A, Bauer A, Hardt C, Eckstein V, Ho AD, Koenen M, Katus
HA and Zehelein J: Atrial-radiofrequency catheter ablation mediated
targeting of mesenchymal stromal cells. Stem Cells. 25:1546–1551.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mylona E, Jones KA, Mills ST and Pavlath
GK: CD44 regulates myoblast migration and differentiation. J Cell
Physiol. 209:314–321. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
DeGrendele HC, Kosfiszer M, Estess P and
Siegelman MH: CD44 activation and associated primary adhesion is
inducible via T cell receptor stimulation. J Immunol.
159:2549–2553. 1997.PubMed/NCBI
|
29
|
Mohamadzadeh M, DeGrendele H, Arizpe H,
Estess P and Siegelman M: Proinflammatory stimuli regulate
endothelial hyaluronan expression and CD44/HA-dependent primary
adhesion. J Clin Invest. 101:97–108. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
National Research Council of the National
Academies: Guide for the care and use of laboratory animals (8th).
National Academies Press. USA: 112011.
|
31
|
Yang C, Zhou L, Gao X, Chen B, Tu J, Sun
H, Liu X, He J, Liu J and Yuan Q: Neuroprotective effects of bone
marrow stem cells overexpressing glial cell line-derived
neurotrophic factor on rats with intracerebral hemorrhage and
neurons exposed to hypoxia/reoxygenation. Neurosurgery. 68:691–704.
2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Geng J, Peng F, Xiong F, Shang Y, Zhao C,
Li W and Zhang C: Inhibition of myostatin promotes myogenic
differentiation of rat bone marrow-derived mesenchymal stromal
cells. Cytotherapy. 11:849–863. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Conget PA and Minguell JJ: Phenotypical
and functional properties of human bone marrow mesenchymal
progenitor cells. J Cell Physiol. 181:67–73. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hermanson M, Funa K, Hartman M,
Claesson-Welsh L, Heldin CH, Westermark B and Nistér M:
Platelet-derived growth factor and its receptors in human glioma
tissue: Expression of messenger RNA and protein suggests the
presence of autocrine and paracrine loops. Cancer Res.
52:3213–3219. 1992.PubMed/NCBI
|
35
|
Zhu H, Mitsuhashi N, Klein A, Barsky LW,
Weinberg K, Barr ML, Demetriou A and Wu GD: The role of the
hyaluronan receptor CD44 in mesenchymal stem cell migration in the
extracellular matrix. Stem Cells. 24:928–935. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Soma Y, Takehara K and Ishibashi Y:
Alteration of the chemotactic response of human skin fibroblasts to
PDGF by growth factors. Exp Cell Res. 212:274–277. 1994. View Article : Google Scholar : PubMed/NCBI
|
37
|
Trojanowska M: Role of PDGF in fibrotic
diseases and systemic sclerosis. Rheumatology (Oxford). 47(Suppl
5): v2–v4. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rönnstrand L and Heldin CH: Mechanisms of
platelet-derived growth factor-induced chemotaxis. Int J Cancer.
91:757–762. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Stamenkovic I, Aruffo A, Amiot M and Seed
B: The hematopoietic and epithelial forms of CD44 are distinct
polypeptides with different adhesion potentials for
hyaluronate-bearing cells. EMBO J. 10:343–348. 1991.PubMed/NCBI
|
40
|
Naor D, Nedvetzki S, Golan I, Melnik L and
Faitelson Y: CD44 in cancer. Crit Rev Clin Lab Sci. 39:527–579.
2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fanning A, Volkov Y, Freeley M, Kelleher D
and Long A: CD44 cross-linking induces protein kinase C-regulated
migration of human T lymphocytes. Int Immunol. 17:449–458. 2005.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Legg JW, Lewis CA, Parsons M, Ng T and
Isacke CM: A novel PKC-regulated mechanism controls CD44 ezrin
association and directional cell motility. Nat Cell Biol.
4:399–407. 2002. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Thorne RF, Legg JW and Isacke CM: The role
of the CD44 transmembrane and cytoplasmic domains in co-ordinating
adhesive and signalling events. J Cell Sci. 117:373–380. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhu B, Suzuki K, Goldberg HA, Rittling SR,
Denhardt DT, McCulloch CA and Sodek J: Osteopontin modulates
CD44-dependent chemotaxis of peritoneal macrophages through
G-protein-coupled receptors: Evidence of a role for an
intracellular form of osteopontin. J Cell Physiol. 198:155–167.
2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sterling H, Saginario C and Vignery A:
CD44 occupancy prevents macrophage multinucleation. J Cell Biol.
143:837–847. 1998. View Article : Google Scholar : PubMed/NCBI
|
46
|
Subramaniam V, Vincent IR, Gardner H, Chan
E, Dhamko H and Jothy S: CD44 regulates cell migration in human
colon cancer cells via Lyn kinase and AKT phosphorylation. Exp Mol
Pathol. 83:207–215. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Avigdor A, Goichberg P, Shivtiel S, Dar A,
Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, et al:
CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of
human CD34+ stem/progenitor cells to bone marrow. Blood.
103:2981–2989. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Afify A, Purnell P and Nguyen L: Role of
CD44s and CD44v6 on human breast cancer cell adhesion, migration
and invasion. Exp Mol Pathol. 86:95–100. 2009. View Article : Google Scholar : PubMed/NCBI
|