1
|
Kamata T, Katsube K, Michikawa M, Yamada
M, Takada S and Mizusawa H: R-spondin, a novel gene with
thrombospondin type 1 domain, was expressed in the dorsal neural
tube and affected in Wnts mutants. Biochim Biophys Acta.
1676:51–62. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nam JS, Turcotte TJ, Smith PF, Choi S and
Yoon JK: Mouse cristin/R-spondin family proteins are novel ligands
for the Frizzled 8 and LRP6 receptors and activate
beta-catenin-dependent gene expression. J Biol Chem.
281:13247–13257. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Parma P, Radi O, Vidal V, Chaboissier MC,
Dellambra E, Valentini S, Guerra L, Schedl A and Camerino G:
R-spondin1 is essential in sex determination, skin differentiation
and malignancy. Nat Genet. 38:1304–1309. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kim KA, Kakitani M, Zhao J, Oshima T, Tang
T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, et al: Mitogenic
influence of human R-spondin1 on the intestinal epithelium.
Science. 309:1256–1259. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Takashima S, Kadowaki M, Aoyama K, Koyama
M, Oshima T, Tomizuka K, Akashi K and Teshima T: The Wnt agonist
R-spondin1 regulates systemic graft-versus-host disease by
protecting intestinal stem cells. J Exp Med. 208:285–294. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhou WJ, Geng ZH, Spence JR and Geng JG:
Induction of intestinal stem cells by R-spondin 1 and Slit2
augments chemoradioprotection. Nature. 501:107–111. 2013.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Korinek V, Barker N, Moerer P, van
Donselaar E, Huls G, Peters PJ and Clevers H: Depletion of
epithelial stem-cell compartments in the small intestine of mice
lacking Tcf-4. Nat Genet. 19:379–383. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kuhnert F, Davis CR, Wang HT, Chu P, Lee
M, Yuan J, Nusse R and Kuo CJ: Essential requirement for Wnt
signaling in proliferation of adult small intestine and colon
revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci
USA. 101:266–271. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pinto D, Gregorieff A, Begthel H and
Clevers H: Canonical Wnt signals are essential for homeostasis of
the intestinal epithelium. Genes Dev. 17:1709–1713. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Willert K, Brown JD, Danenberg E, Duncan
AW, Weissman IL, Reya T, Yates JR III and Nusse R: Wnt proteins are
lipid-modified and can act as stem cell growth factors. Nature.
423:448–452. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Giles RH, van Es JH and Clevers H: Caught
up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta.
1653:1–24. 2003.PubMed/NCBI
|
12
|
Lammi L, Arte S, Somer M, Jarvinen H,
Lahermo P, Thesleff I, Pirinen S and Nieminen P: Mutations in AXIN2
cause familial tooth agenesis and predispose to colorectal cancer.
Am J Hum Genet. 74:1043–1050. 2004. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Kinzler KW, Nilbert MC, Su LK, Vogelstein
B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P and
McKechnie D: Identification of FAP locus genes from chromosome
5q21. Science. 253:661–665. 1991. View Article : Google Scholar : PubMed/NCBI
|
14
|
Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa
N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, et al:
AXIN1 mutations in hepatocellular carcinomas and growth suppression
in cancer cells by virus-mediated transfer of AXIN1. Nat Genet.
24:245–250. 2000. View
Article : Google Scholar : PubMed/NCBI
|
15
|
MacDonald BT, Tamai K and He X:
Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev
Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Carmon KS, Gong X, Lin Q, Thomas A and Liu
Q: R-spondins function as ligands of the orphan receptors LGR4 and
LGR5 to regulate Wnt/β-catenin signaling. Proc Natl Acad Sci USA.
108:11452–11457. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hao HX, Xie Y, Zhang Y, Charlat O, Oster
E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, et al: ZNRF3
promotes Wnt receptor turnover in an R-spondin-sensitive manner.
Nature. 485:195–200. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Koo BK, Spit M, Jordens I, Low TY, Stange
DE, van de Wetering M, van Es JH, Mohammed S, Heck AJ, Maurice MM
and Clevers H: Tumour suppressor RNF43 is a stem-cell E3 ligase
that induces endocytosis of Wnt receptors. Nature. 488:665–669.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wei Q, Yokota C, Semenov MV, Doble B,
Woodgett J and He X: R-spondin1 is a high affinity ligand for LRP6
and induces LRP6 phosphorylation and beta-catenin signaling. J Biol
Chem. 282:15903–15911. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dwek RA, Butters TD, Platt FM and Zitzmann
N: Targeting glycosylation as a therapeutic approach. Nat Rev Drug
Discov. 1:65–75. 2002. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Simizu S, Ishida K, Wierzba MK and Osada
H: Secretion of heparanase protein is regulated by glycosylation in
human tumor cell lines. J Biol Chem. 279:2697–2703. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Niwa Y, Suzuki T, Dohmae N, Umezawa K and
Simizu S: Determination of cathepsin V activity and intracellular
trafficking by N-glycosylation. FEBS Lett. 586:3601–3607. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Goto Y, Niwa Y, Suzuki T, Dohmae N,
Umezawa K and Simizu S: C-mannosylation of human
hyaluronidase 1: Possible roles for secretion and enzymatic
activity. Int J Oncol. 45:344–350. 2014.PubMed/NCBI
|
24
|
Uematsu S, Goto Y, Suzuki T, Sasazawa Y,
Dohmae N and Simizu S: N-glycosylation of extracellular
matrix protein 1 (ECM1) regulates its secretion, which is unrelated
to lipoid proteinosis. FEBS Open Bio. 4:879–885. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Spiro RG: Protein glycosylation: Nature,
distribution, enzymatic formation, and disease implications of
glycopeptide bonds. Glycobiology. 12:43R–56R. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Blom N, Sicheritz-Pontén T, Gupta R,
Gammeltoft S and Brunak S: Prediction of post-translational
glycosylation and phosphorylation of proteins from the amino acid
sequence. Proteomics. 4:1633–1649. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gavel Y and von Heijne G: Sequence
differences between glycosylated and non-glycosylated Asn-X-Thr/Ser
acceptor sites: Implications for protein engineering. Protein Eng.
3:433–442. 1990. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ruddock LW and Molinari M: N-glycan
processing in ER quality control. J Cell Sci. 119:4373–4380. 2006.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kornfeld R and Kornfeld S: Assembly of
asparagine-linked oligosaccharides. Annu Rev Biochem. 54:631–664.
1985. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yasukagawa T, Niwa Y, Simizu S and Umezawa
K: Suppression of cellular invasion by glybenclamide through
inhibited secretion of platelet-derived growth factor in ovarian
clear cell carcinoma ES-2 cells. FEBS Lett. 586:1504–1509. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kuroda M, Funasaki S, Saitoh T, Sasazawa
Y, Nishiyama S, Umezawa K and Simizu S: Determination of
topological structure of ARL6ip1 in cells: Identification of the
essential binding region of ARL6ip1 for conophylline. FEBS Lett.
587:3656–3660. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ukaji T, Sasazawa Y, Umezawa K and Simizu
S: Involvement of conserved tryptophan residues for secretion of
TIMP-2. Oncol Lett. 7:631–634. 2014.PubMed/NCBI
|
33
|
Goto Y, Niwa Y, Suzuki T, Uematsu S,
Dohmae N and Simizu S: N-glycosylation is required for
secretion and enzymatic activity of human hyaluronidase1. FEBS Open
Bio. 4:554–559. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Veeman MT, Slusarski DC, Kaykas A, Louie
SH and Moon RT: Zebrafish prickle, a modulator of noncanonical
Wnt/Fz signaling, regulates gastrulation movements. Curr Biol.
13:680–685. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Solá RJ and Griebenow K: Effects of
glycosylation on the stability of protein pharmaceuticals. J Pharm
Sci. 98:1223–1245. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Waetzig GH, Chalaris A, Rosenstiel P,
Suthaus J, Holland C, Karl N, Vallés Uriarte L, Till A, Scheller J,
Grötzinger J, et al: N-linked glycosylation is essential for
the stability but not the signaling function of the interleukin-6
signal transducer glycoprotein 130. J Biol Chem. 285:1781–1789.
2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zou S, Huang S, Kaleem I and Li C:
N-glycosylation enhances functional and structural stability of
recombinant β-glucuronidase expressed in Pichia pastoris. J
Biotechnol. 164:75–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
de Lau W, Peng WC, Gros P and Clevers H:
The R-spondin/Lgr5/Rnf43 module: Regulator of Wnt signal strength.
Genes Dev. 28:305–316. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cylwik B, Naklicki M, Chrostek L and
Gruszewska E: Congenital disorders of glycosylation. Part I.
Defects of protein N-glycosylation. Acta Biochim Pol. 60:151–161.
2013.PubMed/NCBI
|
40
|
Nakata S, Phillips E and Goidts V:
Emerging role for leucine-rich repeat-containing G-protein-coupled
receptors LGR5 and LGR4 in cancer stem cells. Cancer Manag Res.
6:171–180. 2014.PubMed/NCBI
|
41
|
Chen Q, Cao HZ and Zheng PS: LGR5 promotes
the proliferation and tumor formation of cervical cancer cells
through the Wnt/β-catenin signaling pathway. Oncotarget.
5:9092–9105. 2014. View Article : Google Scholar : PubMed/NCBI
|