1
|
Cooper JS, Porter K, Mallin K, Hoffman HT,
Weber RS, Ang KK, Gay EG and Langer CJ: National Cancer Database
report on cancer of the head and neck: 10-year update. Head Neck.
31:748–758. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dandekar M and D'Cruz A: Organ
preservation strategies: Review of literature and their
applicability in developing nations. South Asian J Cancer.
3:147–150. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gupta SC, Hevia D, Patchva S, Park B, Koh
W and Aggarwal BB: Upsides and downsides of reactive oxygen species
for cancer: The roles of reactive oxygen species in tumorigenesis,
prevention and therapy. Antioxid Redox Signal. 16:1295–1322. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Traverso N, Ricciarelli R, Nitti M,
Marengo B, Furfaro AL, Pronzato MA, Marinari UM and Domenicotti C:
Role of glutathione in cancer progression and chemoresistance. Oxid
Med Cell Longev. 2013:9729132013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lu SC: Glutathione synthesis. Biochim
Biophys Acta. 1830:3143–3153. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen Y, Shertzer HG, Schneider SN, Nebert
DW and Dalton TP: Glutamate cysteine ligase catalysis: Dependence
on ATP and modifier subunit for regulation of tissue glutathione
levels. J Biol Chem. 280:33766–33774. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dahl EL and Mulcahy RT: Cell-type specific
differences in glutamate cysteine ligase transcriptional regulation
demonstrate independent subunit control. Toxicol Sci. 61:265–272.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cai J, Huang ZZ and Lu SC: Differential
regulation of gamma-glutamylcysteine synthetase heavy and light
subunit gene expression. Biochem J. 326:167–172. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Krzywanski DM, Dickinson DA, Iles KE,
Wigley AF, Franklin CC, Liu RM, Kavanagh TJ and Forman HJ: Variable
regulation of glutamate cysteine ligase subunit proteins affects
glutathione biosynthesis in response to oxidative stress. Arch
Biochem Biophys. 423:116–125. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang H, Magilnick N, Ou X and Lu SC:
Tumour necrosis factor alpha induces co-ordinated activation of rat
GSH synthetic enzymes via nuclear factor kappaB and activator
protein-1. Biochem J. 391:399–408. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wild AC, Moinova HR and Mulcahy RT:
Regulation of gamma-glutamylcysteine synthetase subunit gene
expression by the transcription factor Nrf2. J Biol Chem.
274:33627–33636. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang H, Wang J, Huang ZZ, Ou X and Lu SC:
Cloning and characterization of the 5′-flanking region of the rat
glutamate-cysteine ligase catalytic subunit. Biochem J.
455:447–455. 2001. View Article : Google Scholar
|
13
|
Reuter S, Gupta SC, Chaturvedi MM and
Aggarwal BB: Oxidative stress, inflammation, and cancer: How are
they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang H, Magilnick N, Lee C, Kalmaz D, Ou
X, Chan JY and Lu SC: Nrf1 and Nrf2 regulate rat glutamate-cysteine
ligase catalytic subunit transcription indirectly via NF-kappaB and
AP-1. Mol Cell Biol. 25:5933–5946. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Peng Z, Geh E, Chen L, Meng Q, Fan Y,
Sartor M, Shertzer HG, Liu ZG, Puga A and Xia Y: Inhibitor of
kappaB kinase beta regulates redox homeostasis by controlling the
constitutive levels of glutathione. Mol Pharmacol. 77:784–792.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baird L and Dinkova-Kostova AT: The
cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol.
85:241–272. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Na HK and Surh YJ: Oncogenic potential of
Nrf2 and its principal target protein heme oxygenase-1. Free Radic
Biol Med. 67:353–365. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gamcsik MP, Kasibhatla MS, Teeter SD and
Colvin OM: Glutathione levels in human tumors. Biomarkers.
17:671–691. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dequanter D, Van de Velde M, Nuyens V,
Nagy N, Van Antwerpen P, Vanhamme L, Zouaoui Boudjeltia K,
Vanhaeverbeek M, Brohée D and Lothaire P: Assessment of oxidative
stress in tumors and histologically normal mucosa from patients
with head and neck squamous cell carcinoma: A preliminary study.
Eur J Cancer Prev. 22:558–560. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
van der Schroeff MP and de Baatenburg Jong
RJ: Staging and prognosis in head and neck cancer. Oral Oncol.
4–5:356–360. 2009. View Article : Google Scholar
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Varghese F, Bukhari AB, Malhotra R and De
A: IHC Profiler: An open source plugin for the quantitative
evaluation and automated scoring of immunohistochemistry images of
human tissue samples. PLoS One. 9:e968012014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sahoo P, Wilkins C and Yeager J: Threshold
selection using Renyi's entropy. Pattern Recognit. 30:71–84. 1997.
View Article : Google Scholar
|
24
|
Bottero V, Imbert V, Frelin C, Formento JL
and Peyron JF: Monitoring NF-kappa B transactivation potential via
real-time PCR quantification of I kappa B-alpha gene expression.
Mol Diagn. 7:187–194. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Edström SS, Gustafsson B, Stenman G, Lydén
E, Stein H and Westin T: Proliferative pattern of head and neck
cancer. Am J Surg. 162:412–416. 1991. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kearsley JH, Furlong KL, Cooke RA and
Waters MJ: An immunohistochemical assessment of cellular
proliferation markers in head and neck squamous cell cancers. Br J
Cancer. 61:821–827. 1990. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yellin SA, Davidson BJ, Pinto JT, Sacks
PG, Qiao C and Schantz SP: Relationship of glutathione and
glutathione- S-transferase to cisplatin sensitivity in human head
and neck squamous carcinoma cell lines. Cancer Lett. 85:223–232.
1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kato T, Duffey DC, Ondrey FG, Dong G, Chen
Z, Cook JA, Mitchell JB and Van Waes C: Cisplatin and radiation
sensitivity in human head and neck squamous carcinomas are
independently modulated by glutathione and transcription factor
NF-kappaB. Head Neck. 22:748–759. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bhattathiri VN, Sreelekha TT, Sebastian P,
Remani P, Chandini R, Vijayakumar T and Nair MK: Influence of
plasma GSH level on acute radiation mucositis of the oral cavity.
Int J Radiat Oncol Biol Phys. 29:383–386. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Stacy DR, Ely K, Massion PP, Yarbrough WG,
Hallahan DE, Sekhar KR and Freeman ML: Increased expression of
nuclear factor E2 p45-related factor 2 (NRF2) in head and neck
squamous cell carcinomas. Head Neck. 28:813–818. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Loercher A, Lee TL, Ricker JL, Howard A,
Geoghegen J, Chen Z, Sunwoo JB, Sitcheran R, Chuang EY, Mitchell
JB, et al: Nuclear factor-kappaB is an important modulator of the
altered gene expression profile and malignant phenotype in squamous
cell carcinoma. Cancer Res. 64:6511–6523. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kaarteenaho-Wiik R and Kinnula VL:
Distribution of antioxidant enzymes in developing human lung,
respiratory distress syndrome, and bronchopulmonary dysplasia. J
Histochem Cytochem. 52:1231–1240. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nishimura T, Newkirk K, Sessions RB,
Andrews PA, Trock BJ, Rusmussen AA, Montogomery EA, Bischoff EK,
Hanigan MH and Cullen KJ: Association between expression of
glutathione-associated enzymes and response to platinum-based
chemotherapy in head and neck cancer. Chem Biol Interact.
111–112:187–198. 1998. View Article : Google Scholar
|
34
|
Lee JI, Kang J and Stipanuk MH:
Differential regulation of glutamate-cysteine ligase subunit
expression and increased holoenzyme formation in response to
cysteine deprivation. Biochem J. 393:181–190. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Watanabe S, Watanabe R, Oton-Leite AF,
Alencar RC, Oliveira JC, Leles CR, Batista AC and Mendonça EF:
Analysis of cell proliferation and pattern of invasion in oral
squamous cell carcinoma. J Oral Sci. 52:417–424. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Radyuk SN, Rebrin I, Luchak JM, Michalak
K, Klichko VI, Sohal RS and Orr WC: The catalytic subunit of
Drosophila glutamate-cysteine ligase is a nucleocytoplasmic
shuttling protein. J Biol Chem. 284:2266–2274. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Markovic J, Borrás C, Ortega A, Sastre J,
Viña J and Pallardó FV: Glutathione is recruited into the nucleus
in early phases of cell proliferation. J Biol Chem.
282:20416–20424. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
García-Giménez JL, Markovic J, Dasí F,
Queval G, Schnaubelt D, Foyer CH and Pallardó FV: Nuclear
glutathione. Biochim Biophys Acta. 1830:3304–3316. 2013. View Article : Google Scholar : PubMed/NCBI
|