1
|
Novick AC: Kidney cancer: Past, present
and future. Urol Oncol. 25:188–195. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rini BI, Campbell SC and Escudier B: Renal
cell carcinoma. Lancet. 373:1119–1132. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Costa LJ and Drabkin HA: Renal cell
carcinoma: New developments in molecular biology and potential for
targeted therapies. Oncologist. 12:1404–1415. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jemal A, Siegel R, Ward E, Murray T, Xu J
and Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 57:43–66.
2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Janzen NK, Kim HL, Figlin RA and
Belldegrun AS: Surveillance after radical or partial nephrectomy
for localized renal cell carcinoma and management of recurrent
disease. Urol Clin North Am. 30:843–852. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Motzer RJ, Bander NH and Nanus DM:
Renal-cell carcinoma. N Engl J Med. 335:865–875. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ljungberg B, Cowan NC, Hanbury DC, Hora M,
Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF and Sinescu IC:
European Association of Urology Guideline Group: EAU guidelines on
renal cell carcinoma: The 2010 update. Eur Urol. 58:398–406. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Cohen HT and McGovern FJ: Renal-cell
carcinoma. N Engl J Med. 353:2477–2490. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hollingsworth JM, Miller DC, Daignault S
and Hollenbeck BK: Five-year survival after surgical treatment for
kidney cancer: A population-based competing risk analysis. Cancer.
109:1763–1768. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Flanigan RC, Salmon SE, Blumenstein BA,
Bearman SI, Roy V, McGrath PC, Caton JR Jr, Munshi N and Crawford
ED: Nephrectomy followed by interferon alfa-2b compared with
interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J
Med. 345:1655–1659. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Milella M and Felici A: Biology of
metastatic renal cell carcinoma. J Cancer. 2:369–373. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ramirez-Mares MV, Chandra S and de Mejia
EG: In vitro chemopreventive activity of Camellia sinensis,
Ilex paraguariensis and Ardisia compressa tea
extracts and selected polyphenols. Mutat Res. 554:53–65. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Chmura SJ, Dolan ME, Cha A, Mauceri HJ,
Kufe DW and Weichselbaum RR: In vitro and in vivo activity of
protein kinase C inhibitor chelerythrine chloride induces tumor
cell toxicity and growth delay in vivo. Clin Cancer Res. 6:737–742.
2000.PubMed/NCBI
|
14
|
Adhami VM, Aziz MH, Reagan-Shaw SR, Nihal
M, Mukhtar H and Ahmad N: Sanguinarine causes cell cycle blockade
and apoptosis of human prostate carcinoma cells via modulation of
cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery.
Mol Cancer Ther. 3:933–940. 2004.PubMed/NCBI
|
15
|
Walterová D, Ulrichová J, Válka I, Vicar
J, Vavrecková C, Táborská E, Harjrader RJ, Meyer DL, Cerná H and
Simánek V: Benzo[c]phenanthridine alkaloids sanguinarine and
chelerythrine: Biological activities and dental care applications.
Acta Univ Palacki Olomuc Fac Med. 139:7–16. 1995.PubMed/NCBI
|
16
|
Zdařilováa A, Malíkováb J, Dvořáka Z,
Ulrichováa J and Šimánek V: Quaternary isoquinoline alkaloids
sanguinarine and chelerythrine in vitro and in vivo effects. Chem
Listy. 100:30–41. 2006.
|
17
|
Yang R, Piperdi S and Gorlick R:
Activation of the RAF/mitogen-activated protein/extracellular
signal-regulated kinase kinase/extracellular signal-regulated
kinase pathway mediates apoptosis induced by chelerythrine in
osteosarcoma. Clin Cancer Res. 14:6396–6404. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kumar S, Tomar MS and Acharya A:
Chelerythrine delayed tumor growth and increased survival duration
of Dalton's lymphoma bearing BALB/c H (2d) mice by activation of NK
cells in vivo. J Cancer Res Ther. 11:904–910. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wan KF, Chan SL, Sukumaran SK, Lee MC and
Yu VC: Chelerythrine induces apoptosis through a
Bax/Bak-independent mitochondrial mechanism. J Biol Chem.
283:8423–8433. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chmura SJ, Nodzenski E, Crane MA,
Virudachalam S, Hallahan DE, Weichselbaum RR and Quintans J:
Cross-talk between ceramide and PKC activity in the control of
apoptosis in WEHI-231. Adv Exp Med Biol. 406:39–55. 1996.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Freemerman AJ, Turner AJ, Birrer MJ, Szabo
E, Valerie K and Grant S: Role of c-jun in human myeloid leukemia
cell apoptosis induced by pharmacological inhibitors of protein
kinase C. Mol Pharmacol. 49:788–795. 1996.PubMed/NCBI
|
22
|
Chan SL, Lee MC, Tan KO, Yang LK, Lee AS,
Flotow H, Fu NY, Butler MS, Soejarto DD, Buss AD and Yu VC:
Identification of chelerythrine as an inhibitor of BclXL function.
J Biol Chem. 278:20453–20456. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kemény-Beke A, Aradi J, Damjanovich J,
Beck Z, Facskó A, Berta A and Bodnár A: Apoptotic response of uveal
melanoma cells upon treatment with chelidonine, sanguinarine and
chelerythrine. Cancer Lett. 237:67–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yamamoto S, Seta K, Morisco C, Vatner SF
and Sadoshima J: Chelerythrine rapidly induces apoptosis through
generation of reactive oxygen species in cardiac myocytes. J Mol
Cell Cardiol. 33:1829–1848. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Herbert JM, Augereau JM, Gleye J and
Maffrand JP: Chelerythrine is a potent and specific inhibitor of
protein kinase C. Biochem Biophys Res Commun. 172:993–999. 1990.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Vogt A, Tamewitz A, Skoko J, Sikorski RP,
Giuliano KA and Lazo JS: The benzo[c]phenanthridine alkaloid,
sanguinarine, is a selective, cell-active inhibitor of
mitogen-activated protein kinase phosphatase-1. J Biol Chem.
280:19078–19086. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zdarilová A, Vrzal R, Rypka M, Ulrichová J
and Dvorák Z: Investigation of sanguinarine and chelerythrine
effects on CYP1A1 expression and activity in human hepatoma cells.
Food Chem Toxicol. 44:242–249. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kemeny-Beke A, Aradi J, Damjanovich J,
Beck Z, Facsko A, Berta A and Bodnar A: Apoptotic response of uveal
melanoma cells upon treatment with chelidonine, sanguinarine and
chelerythrine. Cancer Lett. 237:67–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ulrichová J, Dvorák Z, Vicar J, Lata J,
Smrzová J, Sedo A and Simánek V: Cytotoxicity of natural compounds
in hepatocyte cell culture models. The case of quaternary
benzo[c]phenanthridine alkaloids. Toxicol Lett. 125:125–132. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Jarvis WD, Turner AJ, Povirk LF, Traylor
RS and Grant S: Induction of apoptotic DNA fragmentation and cell
death in HL-60 human promyelocytic leukemia cells by
pharmacological inhibitors of protein kinase C. Cancer Res.
54:1707–1714. 1994.PubMed/NCBI
|
31
|
Malíková J, Zdarilová A, Hlobilková A and
Ulrichová J: The effect of chelerythrine on cell growth, apoptosis,
and cell cycle in human normal and cancer cells in comparison with
sanguinarine. Cell Biol Toxicol. 22:439–453. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Matkar SS, Wrischnik LA and
Hellmann-Blumberg U: Production of hydrogen peroxide and redox
cycling can explain how sanguinarine and chelerythrine induce rapid
apoptosis. Arch Biochem Biophys. 477:43–52. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xing Z, Zhou Z, Yu R, Li S, Li C, Nilsson
S and Liu Z: XAF1 expression and regulatory effects of somatostatin
on XAF1 in prostate cancer cells. J Exp Clin Cancer Res.
29:1622010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Marzo I, Brenner C, Zamzami N,
Jürgensmeier JM, Susin SA, Vieira HL, Prévost MC, Xie Z, Matsuyama
S, Reed JC and Kromer G: Bax and adenine nucleotide translocator
cooperate in the mitochondrial control of apoptosis. Science.
281:2027–2031. 1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chou YH, Ho YS, Wu CC, Chai CY, Chen SC,
Lee CH, Tsai PS and Wu CH: Tubulozole-induced G2/M cell cycle
arrest in human colon cancer cells through formation of microtubule
polymerization mediated by ERK1/2 and Chk1 kinase activation. Food
Chem Toxicol. 45:1356–1367. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lin MW, Lin AS, Wu DC, Wang SS, Chang FR,
Wu YC and Huang YB: Euphol from Euphorbia tirucalli
selectively inhibits human gastric cancer cell growth through the
induction of ERK1/2-mediated apoptosis. Food Chem Toxicol.
50:4333–4339. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Carson DA and Ribeiro JM: Apoptosis and
disease. Lancet. 341:1251–1254. 1993. View Article : Google Scholar : PubMed/NCBI
|
38
|
Thompson CB: Apoptosis in the pathogenesis
and treatment of disease. Science. 267:1456–1462. 1995. View Article : Google Scholar : PubMed/NCBI
|
39
|
Roberts PJ and Der CJ: Targeting the
Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Somanath PR, Vijai J, Kichina JV, Byzova T
and Kandel ES: The role of PAK-1 in activation of MAP kinase
cascade and oncogenic transformation by Akt. Oncogene.
28:2365–2369. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Somanath PR, Kandel ES, Hay N and Byzova
TV: Akt1 signaling regulates integrin activation, matrix
recognition and fibronectin assembly. J Biol Chem. 282:22964–22976.
2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang JS, Lin CW, Hsieh YS, Cheng HL, Lue
KH, Yang SF and Lu KH: Selaginella tamariscina (Beauv.)
possesses antimetastatic effects on human osteosarcoma cells by
decreasing MMP-2 and MMP-9 secretions via p38 and Akt signaling
pathways. Food Chem Toxicol. 59:801–807. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Thompson N and Lyons J: Recent progress in
targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug
discovery. Curr Opin Pharmacol. 5:350–356. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Balmanno K and Cook SJ: Tumour cell
survival signalling by the ERK1/2 pathway. Cell Death Differ.
16:368–377. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu R, Mandlekar S, Tan TH and Kong AN:
Activation of p38 and c-Jun N-terminal kinase pathways and
induction of apoptosis by chelerythrine do not require inhibition
of protein kinase C. J Biol Chem. 275:9612–9619. 2000. View Article : Google Scholar : PubMed/NCBI
|
46
|
Li C, Chi S, He N, Zhang X, Guicherit O,
Wagner R, Tyring S and Xie J: IFNalpha induces Fas expression and
apoptosis in hedgehog pathway activated BCC cells through
inhibiting Ras-Erk signaling. Oncogene. 23:1608–1617. 2004.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Shelton JG, Steelman LS, White ER and
McCubrey JA: Synergy between PI3K/Akt and Raf/MEK/ERK pathways in
IGF-1R mediated cell cycle progression and prevention of apoptosis
in hematopoietic cells. Cell Cycle. 3:372–379. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yu Q: Restoring p53-mediated apoptosis in
cancer cells: New opportunities for cancer therapy. Drug Resist
Updat. 9:19–25. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang N, Wang X, Huo Q, Li X, Wang H,
Schneider P, Hu G and Yang Q: The oncogene metadherin modulates the
apoptotic pathway based on the tumor necrosis factor superfamily
member TRAIL (Necrosis Factor-related Apoptosis-inducing Ligand) in
breast cancer. J Biol Chem. 288:9396–9407. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Schafer ZT and Kornbluth S: The
apoptosome: Physiological, developmental, and pathological modes of
regulation. Dev Cell. 10:549–561. 2006. View Article : Google Scholar : PubMed/NCBI
|