1
|
Swerdlow SH, Campo E, Harris NL, Jaffe ES,
Pileri SA, Stein H, Thiele J and Vardiman JW: WHO Classification of
Tumours of Haematopoietic and Lymphoid Tissues. 2:(4th). IARC
Press. Lyon: 112–114. 2008.
|
2
|
Tallman MS and Kwaan HC: Reassessing the
hemostatic disorder associated with acute promyelocytic leukemia.
Blood. 79:543–553. 1992.PubMed/NCBI
|
3
|
Cull EH and Altman JK: Contemporary
treatment of APL. Curr Hematol Malig Rep. 9:193–201. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Jun M: Chinese Society of Hematology,
Chinese Medical Association & Chinese Society of Hematologist,
Chinese Medical Doctor Association: Guidelines for diagnosis and
treatment of acute promyelocytic leukemia (2014). Zhonghua Xue Ye
Xue Za Zhi. 35:475–477. 2014.(In Chinese). PubMed/NCBI
|
5
|
Schnittger S, Bacher U, Haferlach C, Kern
W, Alpermann T and Haferlach T: Clinical impact of FLT3 mutation
load in acute promyelocytic leukemia with t(15;17)/PML-RARA.
Haematologica. 96:1799–1807. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yin J, Sun AN, Tian XP, Tian H, Wang RX,
Yang Z, Wang XL, Wu DP, Qiu HY, Pan JL, et al: Clinical
significance of common leukemia gene mutations in patients with
acute promyelocytic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
21:39–44. 2013.(In Chinese). PubMed/NCBI
|
7
|
Liu J, Zou XL, Liu TT, Jiang M and Niu T:
FLT3 mutation in acute promyelocytic leukemia patients with
extramedullary relapse. Sichuan Da Xue Xue Bao Yi Xue Ban. (45):
670–674. 2014.(In Chinese). PubMed/NCBI
|
8
|
Maki K, Arai H, Waga K, Sasaki K, Nakamura
F, Imai Y, Kurokawa M, Hirai H and Mitani K: Leukemia-related
transcription factor TEL is negatively regulated through
extracellular signal-regulated kinase-induced phosphorylation. Mol
Cell Biol. 24:3227–3237. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Akagi T, Kuure S, Uranishi K, Koide H,
Costantini F and Yokota T: ETS-related transcription factors ETV4
and ETV5 are involved in proliferation and induction of
differentiation-associated genes in embryonic stem (ES) cells. J
Biol Chem. 290:22460–22473. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yamamoto K, Yakushijin K, Nakamachi Y,
Miyata Y, Sanada Y, Tanaka Y, Okamura A, Kawano S, Hayashi Y,
Matsuoka H and Minami H: Extramedullary T-lymphoid blast crisis of
an ETV6/ABL1-positive myeloproliferative neoplasm with
t(9;12)(q34;p13) and t(7;14)(p13;q11.2). Ann Hematol. 93:1435–1438.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cuneo A, Agostini P, Vitale A, Foà R and
Castoldi G: Frequency of ETV6/AML1 fusion in adult acute
lymphoblastic leukemia. Leukemia. 17:476–477. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Achkar WA, Aljapawe A, Liehr T and Wafa A:
De novo acute myeloid leukemia subtype-M4 with initial
trisomy 8 and later acquired t(3;12)(q26;p12) leading to
ETV6/MDS1/EVI1 fusion transcript expression: A case report. Oncol
Lett. 7:787–790. 2014.PubMed/NCBI
|
13
|
Nofrini V, Berchicci L, La Starza R,
Gorello P, Di Giacomo D, Arcioni F, Pierini V, Crescenzi B, Romoli
S, Matteucci C and Mecucci C: MN1-ETV6 fusion gene arising from MDS
with 5q-. Leuk Res. 35:e123–e126. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yagasaki F, Jinnai I, Yoshida S, Yokoyama
Y, Matsuda A, Kusumoto S, Kobayashi H, Terasaki H, Ohyashiki K,
Asou N, et al: Fusion of TEL/ETV6 to a novel ACS2 in
myelodysplastic syndrome and acute myelogenous leukemia with
t(5;12)(q31;p13). Genes Chromosomes Cancer. 26:192–202. 1999.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ding BT, Guo NJ, Sun JZ, Gao HM, Wang YS
and Chen Y: Analysis and clinical significance of ETV6
rearrangement in myelodysplastic syndromes patients. Zhonghua Xue
Ye Xue Za Zhi. 28:804–807. 2007.(In Chinese). PubMed/NCBI
|
16
|
Suto Y, Sato Y, Smith SD, Rowley JD and
Bohlander SK: A t(6;12)(q23;p13) results in the fusion of ETV6 to a
novel gene, STL, in a B-cell ALL cell line. Genes Chromosomes
Cancer. 18:254–268. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lambros MB, Tan DS, Jones RL, Vatcheva R,
Savage K, Tamber N, Fenwick K, Mackay A, Ashworth A and Reis-Filho
JS: Genomic profile of a secretory breast cancer with an ETV6-NTRK3
duplication. J Clin Pathol. 62:604–612. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Iijima Y, Ito T, Oikawa T, Eguchi M,
Eguchi-Ishimae M, Kamada N, Kishi K, Asano S, Sakaki Y and Sato Y:
A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2),
identified in an AML-M3 cell line with a t(1;12)(q25;p13)
translocation. Blood. 95:2126–2131. 2000.PubMed/NCBI
|
19
|
Bennett JM, Catovsky D, Daniel MT,
Flandrin G, Galton DA, Gralnick HR and Sultan C: Proposed revised
criteria for the classification of acute myeloid leukemia. A report
of the French-American-British Cooperative Group. Ann Intern Med.
103:620–625. 1985. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schreck RR, Warburton D, Miller OJ, Beiser
SM and Erlanger BF: Chromosome structure as revealed by a combined
chemical and immunochemical procedure. Proc Natl Acad Sci USA.
70:804–807. 1973. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mitelman F: ISCN 1995: An International
System for Human Cytogenetic Nomenclature. Karger, Basel: 1–114.
1995.
|
22
|
Chen SS: Flowcytometric-immunophenotyping
for leukemia needs to be standardized. Zhongguo Shi Yan Xue Ye Xue
Za Zhi. 10:1–5. 2002.(In Chinese). PubMed/NCBI
|
23
|
Bohlander SK: ETV6: A versatile player in
leukemogenesis. Semin Cancer Biol. 15:162–174. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Takahashi W, Sasaki K, Kvomatsu N and
Mitani K: TEL/ETV6 accelerates erythroid differentiation and
inhibits megakaryocytic maturation in a human leukemia cell line
UT-7/GM. Cancer Sci. 96:340–348. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang LC, Swat W, Fujiwara Y, Davidson L,
Visvader J, Kuo F, Alt FW, Gilliland DG, Golub TR and Orkin SH: The
TEL/ETV6 gene is required specifically for hematopoiesis in the
bone marrow. Genes Dev. 12:2392–2402. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hart SM and Foroni L: Core binding factor
genes and human leukemia. Haematologica. 87:1307–1323.
2002.PubMed/NCBI
|
27
|
Tomita A, Kiyoi H and Naoe T: Mechanisms
of action and resistance to all-trans retinoic acid (ATRA) and
arsenic trioxide (As2O3) in acute
promyelocytic leukemia. Int J Hematol. 97:717–725. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
He B, Hu S, Qiu G and Gu W: Clinical
characteristics of acute promyelocytic leukemia manifesting as
early death. Mol Clin Oncol. 1:908–910. 2013.PubMed/NCBI
|
29
|
Xu F, Yin CX, Wang CL, Jiang XJ, Jiang L,
Wang ZX, Yi ZS, Huang KK and Meng FY: Immunophenotypes and immune
markers associated with acute promyelocytic leukemia prognosis. Dis
Markers. 2014:4219062014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lazarevic V, Hörstedt AS, Johansson B,
Antunovic P, Billström R, Derolf A, Hulegårdh E, Lehmann S,
Möllgård L, Nilsson C, et al: Incidence and prognostic significance
of karyotypic subgroups in older patients with acute myeloid
leukemia: The Swedish population-based experience. Blood Cancer J.
4:e1882014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Won D, Shin SY, Park CJ, Jang S, Chi HS,
Lee KH, Lee JO and Seo EJ: OBFC2A/RARA: A novel fusion gene in
variant acute promyelocytic leukemia. Blood. 121:1432–1435. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Albano F, Zagaria A, Anelli L, Orsini P,
Minervini CF, Impera L, Casieri P, Coccaro N, Tota G, Brunetti C,
et al: Lymphoid enhancer binding factor-1 (LEF1) expression as a
prognostic factor in adult acute promyelocytic leukemia.
Oncotarget. 5:649–658. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Eguchi-Ishimae M, Eguchi M, Ishii E,
Miyazaki S, Ueda K, Kamada N and Mizutani S: Breakage and fusion of
the TEL (ETV6) gene in immature B lymphocytes induced by
apoptogenic signals. Blood. 97:737–743. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kralik JM, Kranewitter W, Boesmueller H,
Marschon R, Tschurtschenthaler G, Rumpold H, Wiesinger K, Erdel M,
Petzer AL and Webersinke G: Characterization of a newly identified
ETV6-NTRK3 fusion transcript in acute myeloid leukemia. Diagn
Pathol. 6:192011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cazzaniga G, Tosi S, Aloisi A, Giudici G,
Daniotti M, Pioltelli P, Kearney L and Biondi A: The tyrosine
kinase abl-related gene ARG is fused to ETV6 in an AML-M4Eo patient
with a t(1;12)(q25;p13): Molecular cloning of both reciprocal
transcripts. Blood. 94:4370–4373. 1999.PubMed/NCBI
|
36
|
Murati A, Brecqueville M, Devillier R,
Mozziconacci MJ, Gelsi-Boyer V and Birnbaum D: Myeloid
malignancies: Mutations, models and management. BMC Cancer.
12:3042012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Walz C, Erben P, Ritter M, Bloor A,
Metzgeroth G, Telford N, Haferlach C, Haferlach T, Gesk S, Score J,
et al: Response of ETV6-FLT3-positive myeloid/lymphoid neoplasm
with eosinophilia to inhibitors of FMS-like tyrosine kinase 3.
Blood. 118:2239–2242. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Van Vlierberghe P, Ambesi-Impiombato A,
Perez-Garcia A, Haydu JE, Rigo I, Hadler M, Tosello V, Della Gatta
G, Paietta E, Racevskis J, et al: ETV6 mutations in early immature
human T cell leukemias. J Exp Med. 208:2571–2579. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Griesinger F, Janke A, Podleschny M and
Bohlander SK: Identification of an ETV6-ABL2 fusion transcript in
combination with an ETV6 point mutation in a T-cell acute
lymphoblastic leukaemia cell line. Br J Haematol. 119:454–458.
2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hossain S, Dubielecka PM, Sikorski AF,
Birge RB and Kotula L: Crk and ABI1: Binary molecular switches that
regulate abl tyrosine kinase and signaling to the cytoskeleton.
Genes Cancer. 3:402–413. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nishimura N, Furukawa Y, Sutheesophon K,
Nakamura M, Kishi K, Okuda K, Sato Y and Kano Y: Suppression of ARG
kinase activity by STI571 induces cell cycle arrest through
up-regulation of CDK inhibitor p18/INK4c. Oncogene. 22:4074–4082.
2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Iijima Y, Okuda K, Tojo A, Tri NK,
Setoyama M, Sakaki Y, Asano S, Tokunaga K, Kruh GD and Sato Y:
Transformation of Ba/F3 cells and Rat-1 cells by ETV6/ARG.
Oncogene. 21:4374–4383. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Iriyama N, Hatta Y and Takei M: ETV6/ARG
oncoprotein confers autonomous cell growth by enhancing c-Myc
expression via signal transducer and activator of transcription 5
activation in the acute promyelocytic leukemia cell line HT93A.
Leuk Lymphoma. 56:2416–2423. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Naiel A, Vetter M, Plekhanova O,
Fleischman E, Sokova O, Tsaur G, Harbott J and Tosi S: A novel
three-colour fluorescence in situ hybridization approach for the
detection of t(7;12)(q36;p13) in acute myeloid leukaemia reveals
new cryptic three way translocation t(7;12;16). Cancers (Basel).
5:281–295. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Otsubo K, Kanegane H, Eguchi M,
Eguchi-Ishimae M, Tamura K, Nomura K, Abe A, Ishii E and Miyawaki
T: ETV6-ARNT fusion in a patient with childhood T lymphoblastic
leukemia. Cancer Genet Cytogenet. 202:22–26. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Najfeld V, Cozza A, Berkofsy-Fessler W,
Prchal J and Scalise A: Numerical gain and structural
rearrangements of JAK2, identified by FISH, characterize both
JAK2617V>F-positive and -negative patients with Ph-negative MPD,
myelodysplasia, and B-lymphoid neoplasms. Exp Hematol.
35:1668–1676. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kwon WK, Lee JY, Mun YC, Seong CM, Chung
WS and Huh J: Clinical utility of FISH analysis in addition to
G-banded karyotype in hematologic malignancies and proposal of a
practical approach. Korean J Hematol. 45:171–176. 2010. View Article : Google Scholar : PubMed/NCBI
|