1
|
Guthle M and Dollinger MM: [Epidemiology
and risk factors of hepatocellular carcinoma]. Radiologe.
54:654–659. 2014.PubMed/NCBI
|
2
|
Llovet JM, Bruix J and Gores GJ: Surgical
resection versus transplantation for early hepatocellular
carcinoma: clues for the best strategy. Hepatology. 31:1019–1021.
2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Abou-Alfa GK: Current and novel
therapeutics for hepatocellular carcinomaAmerican Society of
Clinical Oncology Educational Book. Perry MC: ASCO; Alexandria, VA:
pp. 192–197. 2004
|
4
|
Iyoda K, Sasaki Y, Horimoto M, Toyama T,
Yakushijin T, Sakakibara M, Takehara T, Fujimoto J, Hori M, Wands
JR and Hayashi N: Involvement of the p38 mitogen-activated protein
kinase cascade in hepatocellular carcinoma. Cancer Am Cancer Soc.
97:3017–3026. 2003.
|
5
|
Huynh H, Nguyen TT, Chow KH, Tan PH, Soo
KC and Tran E: Over-expression of the mitogen-activated protein
kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its
role in tumor progression and apoptosis. BMC Gastroenterol.
3:192003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chung E and Kondo M: Role of
Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and
leukemia development. Immunol Res. 49:248–268. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang Z, Zhou X, Shen H, Wang D and Wang
Y: Phosphorylated ERK is a potential predictor of sensitivity to
sorafenib when treating hepatocellular carcinoma: evidence from an
in vitro study. BMC Med. 7:412009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Steelman LS, Pohnert SC, Shelton JG,
Franklin RA, Bertrand FE and McCubrey JA: JAK/STAT, Raf/MEK/ERK,
PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis.
Leukemia. 18:189–218. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
McCubrey JA, Steelman LS, Chappell WH,
Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M,
Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth,
malignant transformation and drug resistance. Biochim Biophys Acta.
1773:1263–1284. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Peyssonnaux C, Provot S,
Felder-Schmittbuhl MP, Calothy G and Eychène A: Induction of
postmitotic neuroretina cell proliferation by distinct Ras
downstream signaling pathways. Mol Cell Biol. 20:7068–7079. 2000.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Chappell WH, Steelman LS, Long JM, Kempf
RC, Abrams SL, Franklin RA, Basecke J, Stivala F, Donia M, Fagone
P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M,
Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler
P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli
AM and McCubrey JA: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR
inhibitors: Rationale and importance to inhibiting these pathways
in human health. Oncotarget. 2:135–164. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yan J, Roy S, Apolloni A, Lane A and
Hancock JF: Ras isoforms vary in their ability to activate Raf-1
and phosphoinositide 3-kinase. J Biol Chem. 273:24052–24056. 1998.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Stirewalt DL, Kopecky KJ, Meshinchi S,
Appelbaum FR, Slovak ML, Willman CL and Radich JP: FLT3, RAS, and
TP53 mutations in elderly patients with acute myeloid leukemia.
Blood. 97:3589–3595. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Garnett MJ and Marais R: Guilty as
charged: B-RAF is a human oncogene. Cancer Cell. 6:313–319. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Libra M, Malaponte G, Navolanic PM,
Gangemi P, Bevelacqua V, Proietti L, Bruni B, Stivala F, Mazzarino
MC, Travali S, et al: Analysis of BRAF mutation in primary and
metastatic melanoma. Cell Cycle. 4:1382–1384. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fransén K, Klintenäs M, Osterström A,
Dimberg J, Monstein HJ and Söderkvist P: Mutation analysis of the
BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas.
Carcinogenesis. 25:527–533. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rushworth LK, Hindley AD, O'Neill E and
Kolch W: Regulation and role of Raf-1/B-Raf heterodimerization. Mol
Cell Biol. 26:2262–2272. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alessi DR, Saito Y, Campbell DG, Cohen P,
Sithanandam G, Rapp U, Ashworth A, Marshall CJ and Cowley S:
Identification of the sites in MAP kinase kinase-1 phosphorylated
by p74raf-1. EMBO J. 13:1610–1619. 1994.PubMed/NCBI
|
20
|
Blalock WL, Pearce M, Steelman LS,
Franklin RA, McCarthy SA, Cherwinski H, McMahon M and McCubrey JA:
A conditionally- active form of MEK1 results in autocrine
tranformation of human and mouse hematopoietic cells. Oncogene.
19:526–536. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nakano H, Shindo M, Sakon S, Nishinaka S,
Mihara M, Yagita H and Okumura K: Differential regulation of
IkappaB kinase alpha and beta by two upstream kinases,
NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK
kinase kinase-1. Proc Natl Acad Sci USA. 95:3537–3542. 1998.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chambard JC, Lefloch R, Pouysségur J and
Lenormand P: ERK implication in cell cycle regulation. Biochim
Biophys Acta. 1773:1299–1310. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shelton JG, Chang F, Lee JT, Franklin RA,
Steelman LS and McCubrey JA: B-raf and insulin synergistically
prevent apoptosis and induce cell cycle progression in
hematopoietic cells. Cell Cycle. 3:189–196. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Friday BB and Adjei AA: Advances in
targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase
cascade with MEK inhibitors for cancer therapy. Clin Cancer Res.
4:342–346. 2008. View Article : Google Scholar
|
25
|
Sebolt-Leopold JS, Dudley DT, Herrera R,
Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges
A, Przybranowski S, et al: Blockade of the MAP kinase pathway
suppresses growth of colon tumors in vivo. Nat Med. 5:810–816.
1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Solit DB, Garraway LA, Pratilas CA, Sawai
A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, et al: BRAF
mutation predicts sensitivity to MEK inhibition. Nature.
439:358–362. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Rinehart J, Adjei AA, Lorusso PM,
Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury
P, Kaldjian EP, et al: Multicenter phase II study of the oral MEK
inhibitor, CI-1040, in patients with advanced non-small-cell lung,
breast, colon, and pancreatic cancer. J Clin Oncol. 22:4456–4462.
2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Klein PJ, Schmidt CM, Wiesenauer CA, Choi
JN, Gage EA, Yip-Schneider MT, Wiebke EA, Wang Y, Omer C and
Sebolt-Leopold JS: The effects of a novel MEK inhibitor PD184161 on
MEK-ERK signaling and growth in human liver cancer. Neoplasia.
8:1–8. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Leyton J, Smith G, Lees M, Perumal M,
Nguyen QD, Aigbirhio FI, Golovko O, He Q, Workman P and Aboagye EO:
Noninvasive imaging of cell proliferation following mitogenic
extracellular kinase inhibition by PD0325901. Mol Cancer Ther.
7:3112–3121. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jordan CT, Guzman ML and Noble M: Cancer
stem cells. N Engl J Med. 355:1253–1261. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Burdon T, Smith A and Savatier P:
Signalling, cell cycle and pluripotency in embryonic stem cells.
Trends Cell Biol. 12:432–438. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Downward J: Targeting RAS signalling
pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Hwang YH, Choi JY, Kim S, Chung ES, Kim T,
Koh SS, Lee B, Bae SH, Kim J and Park YM: Over-expression of
c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular
carcinoma. Hepatol Res. 29:113–121. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Roberts PJ and Der CJ: Targeting the
Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hoshino R, Chatani Y, Yamori T, Tsuruo T,
Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, et al:
Constitutive activation of the 41-/43-kDa mitogen-activated protein
kinase signaling pathway in human tumors. Oncogene. 18:813–822.
1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Oka H, Chatani Y, Hoshino R, Ogawa O,
Kakehi Y, Terachi T, Okada Y, Kawaichi M, Kohno M and Yoshida O:
Constitutive activation of mitogen-activated protein (MAP) kinases
in human renal cell carcinoma. Cancer Res. 55:4182–4187.
1995.PubMed/NCBI
|
37
|
Sivaraman VS, Wang H, Nuovo GJ and Malbon
CC: Hyperexpression of mitogen-activated protein kinase in human
breast cancer. J Clin Invest. 99:1478–1483. 1997. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yoshida T, Hisamoto T, Akiba J, Koga H,
Nakamura K, Tokunaga Y, Hanada S, Kumemura H, Maeyama M, Harada M,
et al: Spreds, inhibitors of the Ras/ERK signal transduction, are
dysregulated in human hepatocellular carcinoma and linked to the
malignant phenotype of tumors. Oncogene. 25:6056–6066. 2006.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Ito Y, Sasaki Y, Horimoto M, Wada S,
Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J, et
al: Activation of mitogen-activated protein kinases/extracellular
signal-regulated kinases in human hepatocellular carcinoma.
Hepatology. 27:951–958. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kitahara T, Kiryu S, Ohno K, Morita N,
Kubo T and Kiyama H: Up-regulation of ERK (MAP kinase) and MEK (MAP
kinase kinase) transcription after rat facial nerve transection.
Neurosci Res. 20:275–280. 1994. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ito T, Sasaki Y and Wands JR:
Overexpression of human insulin receptor substrate 1 induces
cellular transformation with activation of mitogen-activated
protein kinases. Mol Cell Biol. 16:943–951. 1996. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tanaka S and Wands JR: Insulin receptor
substrate 1 overexpression in human hepatocellular carcinoma cells
prevents transforming growth factor beta1-induced apoptosis. Cancer
Res. 56:3391–3394. 1996.PubMed/NCBI
|
43
|
Lenormand P, Sardet C, Pagès G, L'Allemain
G, Brunet A and Pouysségur J: Growth factors induce nuclear
translocation of MAP kinases (p42mapk and p44mapk) but not of their
activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol.
122:1079–1088. 1993. View Article : Google Scholar : PubMed/NCBI
|
44
|
Marais R, Wynne J and Treisman R: The SRF
accessory protein Elk-1 contains a growth factor-regulated
transcriptional activation domain. Cell. 73:381–393. 1993.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Kortenjann M, Thomae O and Shaw PE:
Inhibition of v-raf-dependent c-fos expression and transformation
by a kinase-defective mutant of the mitogen-activated protein
kinase Erk2. Mol Cell Biol. 14:4815–4824. 1994. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pulverer BJ, Kyriakis JM, Avruch J,
Nikolakaki E and Woodgett JR: Phosphorylation of c-jun mediated by
MAP kinases. Nature. 353:670–674. 1991. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chiu R, Boyle WJ, Meek J, Smeal T, Hunter
T and Karin M: The c-Fos protein interacts with c-Jun/AP-1 to
stimulate transcription of AP-1 responsive genes. Cell. 54:541–552.
1988. View Article : Google Scholar : PubMed/NCBI
|
48
|
Herber B, Truss M, Beato M and Müller R:
Inducible regulatory elements in the human cyclin D1 promoter.
Oncogene. 9:1295–1304. 1994.PubMed/NCBI
|
49
|
Nishida N, Fukuda Y, Komeda T, Kita R,
Sando T, Furukawa M, Amenomori M, Shibagaki I, Nakao K, Ikenaga M,
et al: Amplification and overexpression of the cyclin D1 gene in
aggressive human hepatocellular carcinoma. Cancer Res.
54:3107–3110. 1994.PubMed/NCBI
|
50
|
Zhou P, Jiang W, Weghorst CM and Weinstein
IB: Overexpression of cyclin D1 enhances gene amplification. Cancer
Res. 56:36–39. 1996.PubMed/NCBI
|
51
|
Lavoie JN, L'Allemain G, Brunet A, Müller
R and Pouysségur J: Cyclin D1 expression is regulated positively by
the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol
Chem. 271:20608–20616. 1996. View Article : Google Scholar : PubMed/NCBI
|
52
|
Noël A, Emonard H, Polette M, Birembaut P
and Foidart JM: Role of matrix, fibroblasts and type IV
collagenases in tumor progression and invasion. Pathol Res Pract.
190:934–941. 1994. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ebara M, Ohto M, Shinagawa T, Sugiura N,
Kimura K, Matsutani S, Morita M, Saisho H, Tsuchiya Y and Okuda K:
Natural history of minute hepatocellular carcinoma smaller than
three centimeters complicating cirrhosis. A study in 22 patients.
Gastroenterology. 90:289–298. 1986. View Article : Google Scholar : PubMed/NCBI
|
54
|
Tsukada Y, Miyazawa K and Kitamura N: High
intensity ERK signal mediates hepatocyte growth factor-induced
proliferation inhibition of the human hepatocellular carcinoma cell
line HepG2. J Biol Chem. 276:40968–40976. 2001. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wiesenauer CA, Yip-Schneider MT, Wang Y
and Schmidt CM: Multiple anticancer effects of blocking MEK-ERK
signaling in hepatocellular carcinoma. J Am Coll Surg. 198:410–421.
2004. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kudo M, Han KH, Kokudo N, Cheng AL, Choi
BI, Furuse J, Izumi N, Park JW, Poon RT and Sakamoto M: Liver
Cancer Working Group report. Jpn J Clin Oncol. 40(Suppl 1):
i19–i27. 2010. View Article : Google Scholar : PubMed/NCBI
|
57
|
Doria M, Klein N, Lucito R and Schneider
RJ: The hepatitis B virus HBx protein is a dual specificity
cytoplasmic activator of Ras and nuclear activator of transcription
factors. EMBO J. 14:4747–4757. 1995.PubMed/NCBI
|
58
|
Ray RB, Lagging LM, Meyer K and Ray R:
Hepatitis C virus core protein cooperates with ras and transforms
primary rat embryo fibroblasts to tumorigenic phenotype. J Virol.
70:4438–4443. 1996.PubMed/NCBI
|
59
|
Schmitz KJ, Wohlschlaeger J, Lang H,
Sotiropoulos GC, Malago M, Steveling K, Reis H, Cicinnati VR,
Schmid KW and Baba HA: Activation of the ERK and AKT signalling
pathway predicts poor prognosis in hepatocellular carcinoma and ERK
activation in cancer tissue is associated with hepatitis C virus
infection. J Hepatol. 48:83–90. 2008. View Article : Google Scholar : PubMed/NCBI
|
60
|
Sato Y, Kato J, Takimoto R, Takada K,
Kawano Y, Miyanishi K, Kobune M, Sato Y, Takayama T, Matunaga T, et
al: Hepatitis C virus core protein promotes proliferation of human
hepatoma cells through enhancement of transforming growth factor
alpha expression via activation of nuclear factor-kappaB. Gut.
55:1801–1808. 2006. View Article : Google Scholar : PubMed/NCBI
|