Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance (Review)
- Authors:
- Fengsheng Li
- Kunming Zhou
- Ling Gao
- Bin Zhang
- Wei Li
- Weijuan Yan
- Xiujun Song
- Huijie Yu
- Sinian Wang
- Nan Yu
- Qisheng Jiang
-
Affiliations: Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China, Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, China Center for Disease Control and Prevention, Beijing 100088, P.R. China, Department of Colorectal Disease Surgery, The Second Artillery General Hospital, Beijing 100088, P.R. China - Published online on: September 12, 2016 https://doi.org/10.3892/ol.2016.5124
- Pages: 3059-3065
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Foray N: Claudius Regaud (1870–1940): A pioneer of radiobiology and radiotherapy. Cancer/Radiothérapie. 16:315–321. 2012.(In French). View Article : Google Scholar | |
Rycaj K and Tang DG: Cancer stem cells and radioresistance. Int J Radiat Biol. 90:615–621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blazek ER, Foutch JL and Maki G: Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133-cells and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys. 67:1–5. 2007. View Article : Google Scholar : PubMed/NCBI | |
de Jong MC, Pramana J, van der Wal JE, Lacko M, Peutz-Kootstra CJ, de Jong JM, Takes RP, Kaanders JH, van der Laan BF, Wachters J, et al: CD44 expression predicts local recurrence after radiotherapy in larynx cancer. Clin Cancer Res. 16:5329–5338. 2010. View Article : Google Scholar : PubMed/NCBI | |
Phillips TM, McBride WH and Pajonk F: The response of CD24 (−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 98:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI | |
Du Z, Qin R, Wei C, Wang M, Shi C, Tian R and Peng C: Pancreatic cancer cells resistant to chemoradiotherapy rich in ‘stem-cell-like’ tumor cells. Dig Dis Sci. 56:741–750. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC and Dirks PB: Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 8:806–823. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM: Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E, Chung IY, Kim IA, Kim EJ, Choi Y, et al: An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer. 104:1730–1738. 2011. View Article : Google Scholar : PubMed/NCBI | |
Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, Kempski H, Moorman AV, Titley I, Swansbury J, et al: Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 469:356–361. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA and Downing JR: Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 322:1377–1380. 2008. View Article : Google Scholar : PubMed/NCBI | |
Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M and Sommer L: Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 71:3098–3109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oravecz-Wilson KI, Philips ST, Yilmaz OH, Ames HM, Li L, Crawford BD, Gauvin AM, Lucas PC, Sitwala K, Downing JR, et al: Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder. Cancer Cell. 16:137–148. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, et al: Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 458:776–779. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, et al: Identification of cells initiating human melanomas. Nature. 451:345–349. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT and Fan ST: Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 13:153–166. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, Hakkarainen T, Kanerva A, Desmond RA, Pesonen S and Hemminki A: Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells. Mol Ther. 15:2088–2093. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, et al: Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: Role of autophagic cell death. J Natl Cancer Inst. 99:1410–1414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schatton T, Frank NY and Frank MH: Identification and targeting of cancer stem cells. Bioessays. 31:1038–1049. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, et al: Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 25:1315–1321. 2007. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
O'Brien CA, Pollett A, Gallinger S and Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106–110. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, Schuster K, Shao C, Larsen JE, Sullivan LA, et al: Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res. 70:9937–9948. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB and Gallick GE: ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One. 6:e206362011. View Article : Google Scholar : PubMed/NCBI | |
Hu L, McArthur C and Jaffe RB: Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer. 102:1276–1283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Guo LP, Chen LZ, Zeng YX and Lu SH: Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res. 67:3716–3724. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kondo T, Setoguchi T and Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 101:781–786. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ho MM, Ng AV, Lam S and Hung JY: Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67:4827–4833. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS and Boman BM: Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69:3382–3389. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ and Guan XY: Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 6:1146–1153. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA and Katz RL: Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI | |
Broadley KW, Hunn MK, Farrand KJ, Price KM, Grasso C, Miller RJ, Hermans IF and McConnell MJ: Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme. Stem Cells. 29:452–461. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alison MR, Lin WR, Lim SM and Nicholson LJ: Cancer stem cells: In the line of fire. Cancer Treat Rev. 38:589–598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rich JN and Bao S: Chemotherapy and cancer stem cells. Cell Stem Cell. 1:353–355. 2007. View Article : Google Scholar : PubMed/NCBI | |
Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, Chung CH and Lu B: Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol. 2011:9418762011. View Article : Google Scholar : PubMed/NCBI | |
Hill RP, Marie-Egyptienne DT and Hedley DW: Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol. 19:106–111. 2009. View Article : Google Scholar : PubMed/NCBI | |
Signore M, Ricci-Vitiani L and De Maria R: Targeting apoptosis pathways in cancer stem cells. Cancer Lett. 332:374–382. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Graham PH, Hao J, Bucci J, Cozzi PJ, Kearsley JH and Li Y: Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev. 33:469–496. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ghisolfi L, Keates AC, Hu X, Lee DK and Li CJ: Ionizing radiation induces stemness in cancer cells. PLoS One. 7:e436282012. View Article : Google Scholar : PubMed/NCBI | |
Lagadec C, Vlashi E, Donna L Della, Dekmezian C and Pajonk F: Radiation-induced reprogramming of breast cancer cells. Stem Cells. 30:833–844. 2012. View Article : Google Scholar : PubMed/NCBI | |
Krause M, Yaromina A, Eicheler W, Koch U and Baumann M: Cancer stem cells: Targets and potential biomarkers for radiotherapy. Clin Cancer Res. 17:7224–7229. 2011. View Article : Google Scholar : PubMed/NCBI | |
Budach V, Stuschke M, Budach W, Baumann M, Geismar D, Grabenbauer G, Lammert I, Jahnke K, Stueben G, Herrmann T, et al: Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: Final results of the radiotherapy cooperative clinical trials group of the German Cancer Society 95-06 Prospective Randomized Trial. J Clin Oncol. 23:1125–1135. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baumann M, Herrmann T, Koch R, Matthiessen W, Appold S, Wahlers B, Kepka L, Marschke G, Feltl D, Fietkau R, et al: CHARTWEL-Bronchus studygroup: Final results of the randomized phase III CHARTWEL-trial (ARO 97-1) comparing hyperfractionated-accelerated versus conventionally fractionated radiotherapy in non-small cell lung cancer (NSCLC). Radiother Oncol. 100:76–85. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baumann M, Krause M, Thames H, Trott K and Zips D: Cancer stem cells and radiotherapy. Int J Radiat Biol. 85:391–402. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baumann M, Krause M and Hill R: Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 8:545–554. 2008. View Article : Google Scholar : PubMed/NCBI | |
Desai A, Webb B and Gerson SL: CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiother Oncol. 110:538–545. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim YS, Kang MJ and Cho YM: Low production of reactive oxygen species and high DNA repair: Mechanism of radioresistance of prostate cancer stem cells. Anticancer Res. 33:4469–4474. 2013.PubMed/NCBI | |
Lagadec C, Vlashi E, Alhiyari Y, Phillips TM, Dratver M Bochkur and Pajonk F: Radiation-induced Notch signaling in breast cancer stem cells. Int J Radiat Oncol Biol Phys. 87:609–618. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoon CH, Kim MJ, Kim RK, Lim EJ, Choi KS, An S, Hwang SG, Kang SG, Suh Y, Park MJ and Lee SJ: c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells. Oncogene. 31:4655–4666. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Kim RK, Yoon CH, An S, Hwang SG, Suh Y, Park MJ, Chung HY, Kim IG and Lee SJ: Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. J Cell Sci. 124:3084–3094. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jamal M, Rath BH, Williams ES, Camphausen K and Tofilon PJ: Microenvironmental regulation of glioblastoma radioresponse. Clin Cancer Res. 16:6049–6059. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Correia AS, Soulet D, Major T, Menon J and Tabar V: Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 28:1019–1029. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bu Y and Cao D: The origin of cancer stem cells. Front Biosci (Schol Ed). 4:819–830. 2012.PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Usami Y, Satake S, Nakayama F, Matsumoto M, Ohnuma K, Komori T, Semba S, Ito A and Yokozaki H: Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol. 215:330–339. 2008. View Article : Google Scholar : PubMed/NCBI | |
Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, Creasap N, Rosol TJ, Robinson ML, Eng C, et al: Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 68:937–945. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A and Kirchner T: Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 179:56–65. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I and Salzet M: Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 291:59–66. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu J and Brown RE: Immunohistochemical detection of epithelialmesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Clin Exp Pathol. 3:755–762. 2010.PubMed/NCBI | |
Shang Y, Cai X and Fan D: Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr Cancer Drug Targets. 13:915–929. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jie D, Zhongmin Z, Guoqing L, Sheng L, Yi Z, Jing W and Liang Z: Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer. Dig Dis Sci. 58:1581–1589. 2013. View Article : Google Scholar : PubMed/NCBI | |
Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A, Wang RY, Brisken C, Guerra R, Andreeff M and Mani SA: Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 28:1435–1445. 2010. View Article : Google Scholar : PubMed/NCBI | |
Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 3:e28882008. View Article : Google Scholar : PubMed/NCBI | |
Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, et al: Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69:2887–2895. 2009. View Article : Google Scholar : PubMed/NCBI | |
He E, Pan F, Li G and Li J: Fractionated ionizing radiation promotes epithelial-mesenchymal transition in human esophageal cancer cells through PTEN deficiency-mediated Akt activation. PLoS One. 10:e01261492015. View Article : Google Scholar : PubMed/NCBI | |
Marie-Egyptienne DT, Lohse I and Hill RP: Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia. Cancer Lett. 341:63–72. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nagarajan D, Melo T, Deng Z, Almeida C and Zhao W: ERK/GSK3β/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med. 52:983–992. 2012. View Article : Google Scholar : PubMed/NCBI | |
Su H, Jin X, Zhang X, Zhao L, Lin B, Li L, Fei Z, Shen L, Fang Y, Pan H and Xie C: FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R. J Transl Med. 13:1042015. View Article : Google Scholar : PubMed/NCBI | |
Li G, Liu Y, Su ZW, Ren SL, Liu C, Tian YQ and Qiu YZ: Irradiation induced epithelial-mesenchymal transition in nasopharyngeal carcinoma in vitro. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 48:662–667. 2013.(In Chinese). PubMed/NCBI | |
Kawamoto A, Yokoe T, Tanaka K, Saigusa S, Toiyama Y, Yasuda H, Inoue Y, Miki C and Kusunoki M: Radiation induces epithelial-mesenchymal transition in colorectal cancer cells. Oncol Rep. 27:51–57. 2012.PubMed/NCBI | |
Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ, Seong KM, Kim W and Youn B: PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells. Cancer Res. 74:5520–5531. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yuan W, Yuan Y, Zhang T and Wu S: Role of Bmi-1 in regulation of ionizing irradiation-induced epithelial-mesenchymal transition and migration of breast cancer cells. PLoS One. 10:e01187992015. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Wang Y, Yang Q, Li X, Kong X, Zhang N, Yuan C, Yang N and Kong B: Low-dose radiation-induced epithelial-mesenchymal transition through NF-κB in cervical cancer cells. Int J Oncol. 42:1801–1806. 2013.PubMed/NCBI | |
Al-Assar O, Demiciorglu F, Lunardi S, Gaspar-Carvalho MM, McKenna WG, Muschel RM and Brunner TB: Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells. Radiother Oncol. 111:243–251. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bastos LG, de Marcondes PG, de-Freitas-Junior JC, Leve F, Mencalha AL, de Souza WF, de Araujo WM, Tanaka MN, Abdelhay ES and Morgado-Díaz JA: Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/β-catenin pathway. J Cell Biochem. 115:2175–2187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, Yuan J, Wang M, Chen D, Sun Y, et al: ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 16:864–875. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Wang J, Zhang K, Tang S, Ren C and Chen Y: The role of CD29-ILK-Akt signaling-mediated epithelial-mesenchymal transition of liver epithelial cells and chemoresistance and radioresistance in hepatocellular carcinoma cells. Med Oncol. 32:1412015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zheng L, Sun Y, Wang T and Wang B: Tangeretin enhances radiosensitivity and inhibits the radiation-induced epithelial-mesenchymal transition of gastric cancer cells. Oncol Rep. 34:302–310. 2015.PubMed/NCBI | |
Wang L, Huang X, Zheng X, Wang X, Li S, Zhang L, Yang Z and Xia Z: Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy. Int J Biol Sci. 9:472–479. 2013. View Article : Google Scholar : PubMed/NCBI | |
Al-Assar O, Muschel RJ, Mantoni TS, McKenna WG and Brunner TB: Radiation response of cancer stem-like cells from established human cell lines after sorting for surface markers. Int J Radiat Oncol Biol Phys. 75:1216–1225. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li W, Patel SS, Cong J, Zhang N, Sabbatino F, Liu X, Qi Y, Huang P, Lee H, et al: Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget. 5:3743–3755. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vares G, Cui X, Wang B, Nakajima T and Nenoi M: Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines. PLoS One. 8:e771242013. View Article : Google Scholar : PubMed/NCBI | |
Aravindan S, Ramraj SK, Somasundaram ST, Herman TS and Aravindan N: Polyphenols from marine brown algae target radiotherapy-coordinated EMT and stemness-maintenance in residual pancreatic cancer. Stem Cell Res Ther. 6:1822015. View Article : Google Scholar : PubMed/NCBI | |
Timmerman LA, Grego-Bessa J, Raya A, Bertrán E, Pérez-Pomares JM, Díez J, Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC and de la Pompa JL: Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18:99–115. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I and Karsan A: Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 204:2935–2948. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl U: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Ahn YH, Gibbons DL, Zang Y, Lin W, Thilaganathan N, Alvarez CA, Moreira DC, Creighton CJ, Gregory PA, et al: The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest. 121:1373–1385. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X, Lewis MT, Gottardis MM, Wong TW, Attar RM, et al: Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol. 27:3165–3175. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S and Nakshatri H: NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: Potential involvement of ZEB-1 and ZEB-2. Oncogene. 26:711–724. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sosic D and Olson EN: A new twist on twist - modulation of the NF-kappaB pathway. Cell Cycle. 2:76–78. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rich JN: Cancer stem cells in radiation resistance. Cancer Res. 67:8980–8984. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mitra A, Mishra L and Li S: EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 6:10697–10711. 2015. View Article : Google Scholar : PubMed/NCBI | |
He YC, Zhou FL, Shen Y, Liao DF and Cao D: Apoptotic death of cancer stem cells for cancer therapy. Int J Mol Sci. 15:8335–8351. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dawood S, Austin L and Cristofanilli M: Cancer stem cells: Implications for cancer therapy. Oncology (Williston Park). 28:1101–1107, and 1110. 2014.PubMed/NCBI | |
Makki J, Myint O, Wynn AA, Samsudin AT and John DV: Expression distribution of cancer stem cells, epithelial to mesenchymal transition, and telomerase activity in breast cancer and their association with clinicopathologic characteristics. Clin Med Insights Pathol. 8:1–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ghisolfi L, Keates AC, Hu X, Lee DK and Li CJ: Ionizing radiation induces stemness in cancer cells. PLoS One. 7:e436282012. View Article : Google Scholar : PubMed/NCBI |