1
|
Mathijssen RH, van Alphen RJ, Verweij J,
Loos WJ, Nooter K, Stoter G and Sparreboom A: Clinical
pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer
Res. 7:2182–2194. 2001.PubMed/NCBI
|
2
|
Guillemette C: Pharmacogenomics of human
UDP-glucuronosyltransferase enzymes. Pharmacogenomics J. 3:136–158.
2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cunningham D, Pyrhönen S, James RD, Punt
CJ, Hickish TF, Heikkila R, Johannesen TB, Starkhammar H, Topham
CA, Awad L, et al: Randomized trial of irinotecan plus supportive
care versus supportive care alone after fluorouracil failure for
patients with metastatic colorectal cancer. Lancet. 352:1413–1418.
1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Saltz LB, Cox JV, Blanke C, Rosen LS,
Fehrenbacher L, Moore MJ, Maroun JA, Ackland SP, Locker PK, Pirotta
N, et al: Irinotecan plus fluorouracil and leucovorin for
metastatic colorectal cancer. N Engl J Med. 343:905–914. 2000.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Fuchs CS, Moore MR, Harker G, Villa L,
Rinaldi D and Hecht JR: Phase III comparison of two irinotecan
dosing regimens in second-line therapy of metastatic colorectal
cancer. J Clin Oncol. 21:807–814. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang W, Zhao ZY, Wu Q, Li J, Fu Q, Cheng
J, Xu N, Wu CP and Xu LG: Multicenter phase II study of modified
FOLFIRI in patients in a Chinese population with advanced
colorectal cancer (CRC) refractory to fluoropyrimidine and
oxaliplatin. J Clin Oncol. 23:292s. 2005.
|
7
|
Maitland ML, Grimsley C, Kuttab-Boulos H,
Witonsky D, Kasza KE, Yang L, Roe BA and Di Rienzo A: Comparative
genomics analysis of human sequence variation in the UGT1A gene
cluster. Pharmacogenomics J. 6:52–62. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gong QH, Cho JW, Huang T, Potter C,
Gholami N, Basu NK, Kubota S, Carvalho S, Pennington MW, Owens IS
and Popescu NC: Thirteen UDPglucuronosyltransferase genes are
encoded at the human UGT1 gene complex locus. Pharmacogenetics.
11:357–368. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Iyer L, King CD, Whitington PF, Green MD,
Roy SK, Tephly TR, Coffman BL and Ratain MJ: Genetic predisposition
to the metabolism of irinotecan (CPT-11). Role of uridine
diphosphate glucuronosyltransferase isoform 1A1 in the
glucuronidation of its active metabolite (SN-38) in human liver
microsomes. J Clin Invest. 101:847–854. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gagné JF, Montminy V, Belanger P,
Journault K, Gaucher G and Guillemette C: Common human UGT1A
polymorphisms and the altered metabolism of irinotecan active
metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol.
62:608–617. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Han JY, Lim HS, Shin ES, Yoo YK, Park YH,
Lee JE, Jang IJ, Lee DH and Lee JS: Comprehensive analysis of UGT1A
polymorphisms predictive for pharmacokinetics and treatment outcome
in patients with non-small-cell lung cancer treated with irinotecan
and cisplatin. J Clin Oncol. 24:2237–2244. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Minami H, Sai K, Saeki M, Saito Y, Ozawa
S, Suzuki K, Kaniwa N, Sawada J, Hamaguchi T, Yamamoto N, et al:
Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic
polymorphisms in Japanese: Roles of UGT1A1*6 and *28. Pharmacogenet
Genomics. 17:497–504. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pharmacia and Upjohn Company LLC, .
Camptosar - irinotecan hydrochloride injection, solution.
http://labeling.pfizer.com/Show
Labeling.aspx?id=533
|
14
|
Sai K, Saeki M, Saito Y, Ozawa S, Katori
N, Jinno H, Hasegawa R, Kaniwa N, Sawada J, Komamura K, et al:
UGT1A1 haplotypes associated with reduced glucuronidation and
increased serum bilirubin in irinotecan-administered Japanese
patients with cancer. Clin Pharmacol Ther. 75:501–515. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Bowcock AM, Anderson LA, Friedman LS,
Black DM, Osborne-Lawrence S, Rowell SE, Hall JM, Solomon E and
King MC: THRA1 and D17S183 flank an interval of <4 cM for the
breast-ovarian cancer gene (BRCA1) on chromosome 17q21. Am J Hum
Genet. 52:718–722. 1993.PubMed/NCBI
|
16
|
Fujita K, Ando Y, Nagashima F, Yamamoto W,
Eodo H, Araki K, Kodama K, Miya T, Narabayashi M and Sasaki Y:
Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6 is
associated with reduced activity for SN-38 in Japanese patients
with cancer. Cancer Chemother Pharmacol. 60:515–522. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lankisch TO, Schulz C, Zwingers T,
Erichsen TJ, Manns MP, Heinemann V and Strassburg CP: Gilbert's
syndrome and irinotecan toxicity: Combination with
UDP-glucuronosyltransferase 1A7 variants increases. Cancer
Epidemiol Biomarkers Prev. 17:695–701. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hazama S, Mishima H, Tsunedomi R, Okuyama
Y, Kato T, Takahashi K, Nozawa H, Ando H, Kobayashi M, Takemoto H,
et al: UGT1A1*6, 1A7*3, and 1A9*22 genotypes predict severe
neutropenia in FOLFIRI-treated metastatic colorectal cancer in two
prospective studies in Japan. Cancer Sci. 104:1662–1669. 2013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yamanaka H, Nakajima M, Katoh M, Hara Y,
Tachibana O, Yamashita J, McLeod HL and Yokoi T: A novel
polymorphism in the promoter region of human UGT1A9 gene
(UGT1A9*22) and its effects on the transcriptional activity.
Pharmacogenetics. 14:329–332. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cecchin E, Innocenti F, D'Andrea M, Corona
G, De Mattia E, Biason P, Buonadonna A and Toffoli G: Predictive
role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their
haplotypes on the outcome of metastatic colorectal cancer patients
treated with fluorouracil, leucovorin, and irinotecan. J Clin
Oncol. 27:2457–2465. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cui C, Shu C, Yang Y, Liu J, Shi S, Shao
Z, Wang N, Yang T and Hu S: XELIRI compared with FOLFIRI as a
second-line treatment in patients with metastatic colorectal
cancer. Oncol Lett. 8:1864–1872. 2014.PubMed/NCBI
|
22
|
Barrett JC, Fry B, Maller J and Daly MJ:
Haploview: Analysis and visualization of LD and haplotype maps.
Bioinformatics. 21:263–265. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Barrett JC, Fry B, Maller J and Daly MJ:
Haploview: Analysis and visualization of LD and haplotype maps.
Bioinformatics. 21:263–265. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Abecasis GR and Cookson WO: GOLD-graphical
overview of linkage disequilibrium. Bioinformatics. 16:182–183.
2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Uhlén M, Fagerberg L, Hallström BM,
Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the
human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Purcell S, Neale B, Todd-Brown K, Thomas
L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly
MJ and Sham PC: PLINK: A toolset for whole-genome association and
population-based linkage analysis. Am J Hum Genet. 81:559–575.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Guillemette C, Ritter JK, Auyeung DJ,
Kessler FK and Housman DE: Structural heterogeneity at the
UDP-glucuronosyltransferase 1 locus: Functional consequences of
three novel missense mutations in the human UGT1A7 gene.
Pharmacogenetics. 10:629–644. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang H, Bian T, Jin T, Chen Y, Lin A and
Chen C: Association analysis of UGT1A genotype and haplotype with
SN-38 glucuronidation in human livers. Pharmacogenomics.
15:785–798. 2014. View Article : Google Scholar : PubMed/NCBI
|