1
|
Kollareddy M, Dzubak P, Zheleva D and
Hajduch M: Aurora kinases: Structure, functions and their
association with cancer. Biomed Pap Med Fac Univ Palacky Olomouc
Czech Repub. 152:27–33. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hochegger H, Hégarat N and Pereira-Leal
JB: Aurora at the pole and equator: Overlapping functions of Aurora
kinases in the mitotic spindle. Open Biol. 3:1201852013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vas AC and Clarke DJ: Aurora B kinases
restrict chromosome decondensation to telophase of mitosis. Cell
Cycle. 7:293–296. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dutertre S, Descamps S and Prigent C: On
the role of aurora-A in centrosome function. Oncogene.
21:6175–6183. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Carmena M, Ruchaud S and Earnshaw WC:
Making the Auroras glow: Regulation of Aurora A and B kinase
function by interacting proteins. Curr Opin Cell Biol. 21:796–805.
2002. View Article : Google Scholar
|
6
|
Umene K, Banno K, Kisu I, Yanokura M,
Nogami Y, Tsuji K, Masuda K, Ueki A, Kobayashi Y, Yamagami W, et
al: Aurora kinase inhibitors: Potential molecular-targeted drugs
for gynecologic malignant tumors. Biomed Rep. 1:335–340.
2013.PubMed/NCBI
|
7
|
Mehra R, Serebriiskii IG, Burtness B,
Astsaturov I and Golemis EA: Aurora kinases in head and neck
cancer. Lancet Oncol. 14:e425–e435. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Baldini E, Sorrenti S, D'Armiento E,
Prinzi N, Guaitoli E, Favoriti P, Gnessi L, Moretti C, Bianchini M,
Alessandrini S, et al: Aurora kinases: New molecular targets in
thyroid cancer therapy. Clin Ter. 163:e457–e462. 2012.PubMed/NCBI
|
9
|
Kelly KR, Ecsedy J, Mahalingam D, Nawrocki
ST, Padmanabhan S, Giles FJ and Carew JS: Targeting aurora kinases
in cancer treatment. Curr Drug Targets. 12:2067–2078. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Cheung CH, Sarvagalla S, Lee JY, Huang YC
and Coumar MS: Aurora kinase inhibitor patents and agents in
clinical testing: An update (2011–2013). Expert Opin Ther Pat.
24:1021–1038. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mortlock AA, Foote KM, Heron NM, Jung FH,
Pasquet G, Lohmann JJ, Warin N, Renaud F, De Savi C, Roberts NJ, et
al: Discovery, synthesis, and in vivo activity of a new class of
pyrazoloquinazolines as selective inhibitors of aurora B kinase. J
Med Chem. 50:2213–2224. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lorusso D, Petrelli F, Coinu A,
Raspagliesi F and Barni S: A systematic review comparing cisplatin
and carboplatin plus paclitaxel-based chemotherapy for recurrent or
metastatic cervical cancer. Gynecol Oncol. 133:117–123. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Viswanathan AN: Advances in the use of
radiation for gynecologic cancers. Hematol Oncol Clin North Am.
26:157–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun C, Chan F, Briassouli P and
Linardopoulos S: Aurora kinase inhibition downregulates NF-kappaB
and sensitises tumour cells to chemotherapeutic agents. Biochem
Biophys Res Commun. 352:220–225. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Akiyama M, Izumi H, Wang KY, Yamaguchi T,
Kuma A, Kitamura N, Harada Y, Oya R, Yamaguchi K, Iwai Y and Kohno
K: Hypersensitivity to aurora kinase inhibitors in cells resistant
against platinum- containing anticancer agents. Anticancer Agents
Med Chem. 14:1042–1050. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Reynolds CP and Maurer BJ: Evaluating
response to antineoplastic drug combinations in tissue culture
models. Methods Mol Med. 110:73–183. 2005.
|
17
|
Yamaguchi T, Kurita T, Nishio K, Tsukada
J, Hachisuga T, Morimoto Y, Iwai Y and Izumi H: Expression of BAF57
in ovarian cancer cells and drug sensitivity. Cancer Sci.
106:359–366. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Fu S, Li Y, Huang J, Liu T, Hong Z, Chen
A, Bast RC, Kavanagh JJ, Gershenson DM, Sood AK and Hu W: Aurora
kinase inhibitor VE 465 synergistically enhances cytotoxicity of
carboplatin in ovarian cancer cells through induction of apoptosis
and downregulation of histone 3. Cancer Biol Ther. 13:1034–1041.
2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fiskus W, Hembruff SL, Rao R, Sharma P,
Balusu R, Venkannagari S, Smith JE, Peth K, Peiper SC and Bhalla
KN: Co-treatment with vorinostat synergistically enhances activity
of Aurora kinase inhibitor against human breast cancer cells.
Breast Cancer Res Treat. 135:433–444. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang L and Zhang S: ZM447439, the Aurora
kinase B inhibitor, suppresses the growth of cervical cancer SiHa
cells and enhances the chemosensitivity to cisplatin. J Obstet
Gynaecol Res. 37:591–600. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kimura M, Uchida C, Takano Y, Kitagawa M
and Okano Y: Cell cycle-dependent regulation of the human aurora B
promoter. Biochem Biophys Res Commun. 316:930–936. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ianari A, Gallo R, Palma M, Alesse E and
Gulino A: Specific role for p300/CREB-binding protein-associated
factor activity in E2F1 stabilization in response to DNA damage. J
Biol Chem. 279:30830–30835. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Real S, Espada L, Espinet C, Santidrián AF
and Tauler A: Study of the in vivo phosphorylation of E2F1 on
Ser403. Biochim Biophys Acta. 1803:912–918. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hartman J, Müller P, Foster JS, Wimalasena
J, Gustafsson JA and Ström A: HES-1 inhibits 17beta-estradiol and
heregulin-beta1-mediated upregulation of E2F-1. Oncogene.
23:8826–8833. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sorenson CM, Barry MA and Eastman A:
Analysis of events associated with cell cycle arrest at G2 phase
and cell death induced by cisplatin. J Natl Cancer Inst.
82:749–755. 1990. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nam C, Doi K and Nakayama H: Etoposide
induces G2/M arrest and apoptosis in neural progenitor cells via
DNA damage and an ATM/p53-related pathway. Histol Histopathol.
25:485–493. 2010.PubMed/NCBI
|
28
|
Ling YH, el-Naggar AK, Priebe W and
Perez-Soler R: Cell cycle-dependent cytotoxicity, G2/M phase
arrest, and disruption of p34cdc2/cyclin B1 activity induced by
doxorubicin in synchronized P388 cells. Mol Pharmacol. 49:832–841.
1996.PubMed/NCBI
|
29
|
Wang JG, Barsky LW, Davicioni E, Weinberg
KI, Triche TJ, Zhang XK and Wu L: Retinoic acid induces leukemia
cell G1 arrest and transition into differentiation by inhibiting
cyclin-dependent kinase-activating kinase binding and
phosphorylation of PML/RARalpha. FASEB J. 20:2142–2144. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Nakazato T, Okudaira T, Ishikawa C, Nakama
S, Sawada S, Tomita M, Uchihara JN, Taira N, Masuda M, Tanaka Y, et
al: Anti-adult T-cell leukemia effects of a novel synthetic
retinoid, Am80 (Tamibarotene). Cancer Sci. 99:2286–2294. 2008.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Fujimoto K, Hosotani R, Doi R, Wada M, Lee
JU, Koshiba T, Miyamoto Y, Tsuji S, Nakajima S and Imamura M:
Induction of cell-cycle arrest and apoptosis by a novel
retinobenzoic-acid derivative, TAC-101, in human pancreatic-cancer
cells. Int J Cancer. 81:637–644. 1999. View Article : Google Scholar : PubMed/NCBI
|