1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Forman DBF, Brewster DH, Mbalawa C Gombe,
Kohler B, Piñeros M, Steliarova-Foucher E, Swaminathan R and Ferlay
J: GLOBOCAN 2012: Estimated Cancer Incidence. Mortality and
Prevalence Worldwide in 2012. accessed. 6th–March. 2015, Available
at. http://globocan.iarc.fr
|
3
|
Nogueira-Rodrigues A, Moralez G,
Grazziotin R, Carmo CC, Small IA, Alves FV, Mamede M, Erlich F,
Viegas C, Triginelli SA and Ferreira CG: Phase 2 trial of erlotinib
combined with cisplatin and radiotherapy in patients with locally
advanced cervical cancer. Cancer. 120:1187–1193. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tewari KS, Sill MW, Long HJ III, Penson
RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao
MM, et al: Improved survival with bevacizumab in advanced cervical
cancer. N Engl J Med. 370:734–743. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Movva S, Rodriguez L, Arias-Pulido H and
Verschraegen C: Novel chemotherapy approaches for cervical cancer.
Cancer. 115:3166–3180. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Husseinzadeh N and Husseinzadeh HD: mTOR
inhibitors and their clinical application in cervical, endometrial
and ovarian cancers: A critical review. Gynecol Oncol. 133:375–381.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bosch FX, Lorincz A, Muñoz N, Meijer CJ
and Shah KV: The causal relation between human papillomavirus and
cervical cancer. J Clin Pathol. 55:244–265. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Feng W, Duan X, Liu J, Xiao J and Brown
RE: Morphoproteomic evidence of constitutively activated and
overexpressed mTOR pathway in cervical squamous carcinoma and high
grade squamous intraepithelial lesions. Int J Clin Exp Pathol.
2:249–260. 2009.PubMed/NCBI
|
9
|
Advani SH: Targeting mTOR pathway: A new
concept in cancer therapy. Indian J Med Paediatr Oncol. 31:132–136.
2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Courtney KD, Corcoran RB and Engelman JA:
The PI3K pathway as drug target in human cancer. J Clin Oncol.
28:1075–1083. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
LoPiccolo J, Blumenthal GM, Bernstein WB
and Dennis PA: Targeting the PI3K/Akt/mTOR pathway: Effective
combinations and clinical considerations. Drug Resist Updat.
11:32–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Diaz-Padilla I, Duran I, Clarke BA and Oza
AM: Biologic rationale and clinical activity of mTOR inhibitors in
gynecological cancer. Cancer Treat Rev. 38:767–775. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou H, Luo Y and Huang S: Updates of mTOR
inhibitors. Anticancer Agents Med Chem. 10:571–581. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hutson TE, Escudier B, Esteban E,
Bjarnason GA, Lim HY, Pittman KB, Senico P, Niethammer A, Lu DR,
Hariharan S and Motzer RJ: Randomized phase III trial of
temsirolimus versus sorafenib as second-line therapy after
sunitinib in patients with metastatic renal cell carcinoma. J Clin
Oncol. 32:760–767. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Motzer RJ, Escudier B, Oudard S, Hutson
TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA,
Hollaender N, et al: Efficacy of everolimus in advanced renal cell
carcinoma: A double-blind, randomised, placebo-controlled phase III
trial. Lancet. 372:449–456. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baselga J, Campone M, Piccart M, Burris HA
III, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun
F, et al: Everolimus in postmenopausal hormone-receptor-positive
advanced breast cancer. N Engl J Med. 366:520–529. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liberati A, Altman DG, Tetzlaff J, Mulrow
C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J
and Moher D: The PRISMA statement for reporting systematic reviews
and meta-analyses of studies that evaluate health care
interventions: Explanation and Elaboration. Ann Intern Med.
151:W65–W94. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
The University of York, . Centre for
Reviews and Dissemination. [cited 02/23/2015]. Available at.
http://www.crd.york.ac.uk/PROSPERO/
|
19
|
Guyatt G, Oxman AD, Akl EA, Kunz R, Vist
G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, et al:
GRADE guidelines: 1. Introduction-GRADE evidence profiles and
summary of findings tables. J Clin Epidemiol. 64:383–394. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Bae-Jump VL, Zhou C, Gehrig PA, Whang YE
and Boggess JF: Rapamycin inhibits hTERT telomerase mRNA
expression, independent of cell cycle arrest. Gynecol Oncol.
100:487–494. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Brana I, Berger R, Golan T, Haluska P,
Edenfield J, Fiorica J, Stephenson J, Martin LP, Westin S, Hanjani
P, et al: A parallel-arm phase I trial of the humanised anti-IGF-1R
antibody dalotuzumab in combination with the AKT inhibitor MK-2206,
the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752,
in patients with advanced solid tumours. Br J Cancer.
111:1932–1944. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Brüning A, Rahmeh M and Friese K:
Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated
sestrin-2 regulation. Mol Oncol. 7:1012–1018. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen YJ, Kay N, Yang JM, Lin CT, Chang HL,
Wu YC, Fu CF, Chang Y, Lo S, Hou MF, et al: Total synthetic
protoapigenone WYC02 inhibits cervical cancer cell proliferation
and tumour growth through PIK3 signalling pathway. Basic Clin
Pharmacol Toxicol. 113:8–18. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chi EY, Viriyapak B, Kwack HS, Lee YK, Kim
SI, Lee KH and Park TC: Regulation of paclitaxel-induced programmed
cell death by autophagic induction: A model for cervical cancer.
Obstet Gynecol Sci. 56:84–92. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Choi Y and Lee JH: The combination of
tephrosin with 2-deoxy-D-glucose enhances the cytotoxicity via
accelerating ATP depletion and blunting autophagy in human cancer
cells. Cancer Biol Ther. 12:989–996. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cohen EE, Sharma MR, Janisch L, Llobrera
M, House L, Wu K, Ramirez J, Fleming GF, Stadler WM and Ratain MJ:
A phase I study of sirolimus and bevacizumab in patients with
advanced malignancies. Eur J Cancer. 47:1484–1489. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cui F, Li X, Zhu X, Huang L, Huang Y, Mao
C, Yan Q, Zhu J, Zhao W and Shi H: MiR-125b inhibits tumor growth
and promotes apoptosis of cervical cancer cells by targeting
phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol
Biochem. 30:1310–1308. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dan S, Okamura M, Mukai Y, Yoshimi H,
Inoue Y, Hanyu A, Sakaue-Sawano A, Imamura T, Miyawaki A and Yamori
T: ZSTK474, a specific phosphatidylinositol 3-kinase inhibitor,
induces G1 arrest of the cell cycle in vivo. Eur J Cancer.
48:936–943. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Farha AK, Dhanya SR, Mangalam SN, Geetha
BS, Latha PG and Remani P: Deoxyelephantopin impairs growth of
cervical carcinoma SiHa cells and induces apoptosis by targeting
multiple molecular signaling pathways. Cell Biol Toxicol.
30:331–343. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Faried LS, Faried A, Kanuma T, Nakazato T,
Tamura T, Kuwano H and Minegishi T: Inhibition of the mammalian
target of rapamycin (mTOR) by rapamycin increases chemosensitivity
of CaSki cells to paclitaxel. Eur J Cancer. 42:934–947. 2006.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Guan TJ, Qin FJ, Du JH, Geng L, Zhang YY
and Li M: AICAR inhibits proliferation and induced S-phase arrest,
and promotes apoptosis in CaSki cells. Acta Pharmacol Sin.
28:1984–1990. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hou LL, Gao C, Chen L, Hu GQ and Xie SQ:
Essential role of autophagy in fucoxanthin-induced cytotoxicity to
human epithelial cervical cancer HeLa cells. Acta Pharmacol Sin.
34:1403–1410. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hou MM, Liu X, Wheler J, Naing A, Hong D,
Coleman RL, Tsimberidou A, Janku F, Zinner R, Lu K, Kurzrock R and
Fu S: Targeted PI3K/AKT/mTOR therapy for metastatic carcinomas of
the cervix: A phase I clinical experience. Oncotarget.
5:11168–11179. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Janku F, Tsimberidou AM, Garrido-Laguna I,
Wang X, Luthra R, Hong DS, Naing A, Falchook GS, Moroney JW,
Piha-Paul SA, et al: PIK3CA mutations in patients with advanced
cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer
Ther. 10:558–565. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Janku F, Wheler JJ, Naing A, Falchook GS,
Hong DS, Stepanek VM, Fu S, Piha-Paul SA, Lee JJ, Luthra R, et al:
PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR
signaling pathway inhibitors in early phase clinical trials. Cancer
Res. 73:276–284. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Janku F, Wheler JJ, Naing A, Stepanek VM,
Falchook GS, Fu S, Garrido-Laguna I, Tsimberidou AM, Piha-Paul SA,
Moulder SL, et al: PIK3CA mutations in advanced cancers:
Characteristics and outcomes. Oncotarget. 3:1566–1575. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ji J and Zheng P-S: Activation of mTOR
signaling pathway contributes to survival of cervical cancer cells.
Gynecol Oncol. 117:103–108. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kang S, Dong SM, Kim BR, Park MS, Trink B,
Byun HJ and Rho SB: Thioridazine induces apoptosis by targeting the
PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells.
Apoptosis. 17:989–997. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kim J, Park M, Ryu BJ and Kim SH: The
protein kinase 2 inhibitor CX-4945 induces autophagy in human
cancer cell lines. Bulletin of the Korean Chemical Society.
35:2985–2989. 2014. View Article : Google Scholar
|
40
|
Kwan HT, Chan DW, Cai PC, Mak CS, Yung MM,
Leung TH, Wong OG, Cheung AN and Ngan HY: AMPK activators suppress
cervical cancer cell growth through inhibition of DVL3 mediated
Wnt/β-catenin signaling activity. PloS One. 8:e535972013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Li J, Ping Z and Ning H: MiR-218 impairs
tumor growth and increases chemo-sensitivity to cisplatin in
cervical cancer. Int J Mol Sci. 13:16053–16064. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li SR, Li Y, Hu R, Li W, Qiu H, Cai H and
Wang S: The mTOR inhibitor AZD8055 inhibits proliferation and
glycolysis in cervical cancer cells. Oncol Lett. 5:717–721.
2013.PubMed/NCBI
|
43
|
Ma J, Zi Jiang Y, Shi H, Mi C, Li J, Nan J
Xing, Wu X, Lee J Joon and Jin X: Cucurbitacin B inhibits the
translational expression of hypoxia-inducible factor-1α. Eur J
Pharmacol. 723:46–54. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Martin-Liberal J, Gil-Martín M,
Sáinz-Jaspeado M, Gonzalo N, Rigo R, Colom H, Muñoz C, Tirado OM
and García del Muro X: Phase I study and preclinical efficacy
evaluation of the mTOR inhibitor sirolimus plus gemcitabine in
patients with advanced solid tumours. Br J Cancer. 111:858–865.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Molinolo AA, Marsh C, El Dinali M, Gangane
N, Jennison K, Hewitt S, Patel V, Seiwert TY and Gutkind JS: mTOR
as a molecular target in HPV-associated oral and cervical squamous
carcinomas. Clin Cancer Res. 18:2558–2568. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
O'Donnell A, Faivre S, Burris HA III, Rea
D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U,
Kovarik JM, et al: Phase I pharmacokinetic and pharmacodynamic
study of the oral mammalian target of rapamycin inhibitor
everolimus in patients with advanced solid tumors. J Clin Oncol.
26:1588–1595. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Papadopoulos KP, Tabernero J, Markman B,
Patnaik A, Tolcher AW, Baselga J, Shi W, Egile C, Ruiz-Soto R,
Laird AD, et al: Phase I safety, pharmacokinetic, and
pharmacodynamic study of SAR245409 (XL765), a novel, orally
administered PI3K/mTOR inhibitor in patients with advanced solid
tumors. Clin Cancer Res. 20:2445–2456. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Rashmi R, DeSelm C, Helms C, Bowcock A,
Rogers BE, Rader J, Grigsby PW and Schwarz JK: AKT inhibitors
promote cell death in cervical cancer through disruption of mTOR
signaling and glucose uptake. PloS One. 9:e929482014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Reddy GL, Guru SK, Srinivas M, Pathania
AS, Mahajan P, Nargotra A, Bhushan S, Vishwakarma RA and Sawant SD:
Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one
analogs and their biological evaluation as anticancer agents: mTOR
inhibitors. Eur J Med Chem. 80:201–208. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Roy B, Pattanaik AK, Das J, Bhutia SK,
Behera B, Singh P and Maiti TK: Role of PI3K/Akt/mTOR and MEK/ERK
pathway in Concanavalin A induced autophagy in HeLa cells. Chem
Biol Interact. 210:96–102. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Sahin K, Tuzcu M, Basak N, Caglayan B,
Kilic U, Sahin F and Kucuk O: Sensitization of cervical cancer
cells to cisplatin by genistein: The role of NFκB and Akt/mTOR
signaling pathways. J Oncol. 2012:4615622012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shin JM, Jeong YJ, Cho HJ, Park KK, Chung
IK, Lee IK, Kwak JY, Chang HW, Kim CH, Moon SK, et al: Melittin
suppresses HIF-1α/VEGF expression through inhibition of ERK and
mTOR/p70S6K pathway in human cervical carcinoma cells. PloS One.
8:e693802013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Temkin SM, Yamada SD and Fleming GF: A
phase I study of weekly temsirolimus and topotecan in the treatment
of advanced and/or recurrent gynecologic malignancies. Gynecol
Oncol. 117:473–476. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wan G, Xie W, Liu Z, Xu W, Lao Y, Huang N,
Cui K, Liao M, He J, Jiang Y, et al: Hypoxia-induced MIR155 is a
potent autophagy inducer by targeting multiple players in the MTOR
pathway. Autophagy. 10:70–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang L, Chang L, Li Z, Gao Q, Cai D, Tian
Y, Zeng L and Li M: miR-99a and −99b inhibit cervical cancer cell
proliferation and invasion by targeting mTOR signaling pathway. Med
Oncol. 31:9342014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Xiao X, He Q, Lu C, Werle KD, Zhao RX,
Chen J, Davis BC, Cui R, Liang J and Xu ZX: Metformin impairs the
growth of liver kinase B1-intact cervical cancer cells. Gynecol
Oncol. 127:249–255. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Xu QJ, Hou LL, Hu GQ and Xie SQ: Molecular
mechanism of ophiopogonin B induced cellular autophagy of human
cervical cancer HeLa cells. Yao Xue Xue Bao. 48:855–859. 2013.(In
Chinese). PubMed/NCBI
|
58
|
Yu SY, Chan DW, Liu VW and Ngan HY:
Inhibition of cervical cancer cell growth through activation of
upstream kinases of AMP-activated protein kinase. Tumor Biol.
30:80–85. 2009. View Article : Google Scholar
|
59
|
Zhang C, Yang N, Yang CH, Ding HS, Luo C,
Zhang Y, Wu MJ, Zhang XW, Shen X, Jiang HL, et al: S9, a novel
anticancer agent, exerts its anti-proliferative activity by
interfering with both PI3K-Akt-mTOR signaling and microtubule
cytoskeleton. PloS One. 4:e48812009. View Article : Google Scholar : PubMed/NCBI
|
60
|
Moroney JW, Schlumbrecht MP, Helgason T,
Coleman RL, Moulder S, Naing A, Bodurka DC, Janku F, Hong DS and
Kurzrock R: A Phase I trial of liposomal doxorubicin, bevacizumab,
and temsirolimus in patients with advanced gynecologic and breast
malignancies. Clin Cancer Res. 17:6840–6846. 2011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Piha-Paul SA, Wheler JJ, Fu S, Levenback
C, Lu K, Falchook GS, Naing A, Hong DS, Tsimberidou AM and Kurzrock
R: Advanced gynecologic malignancies treated with a combination of
the VEGF inhibitor bevacizumab and the mTOR inhibitor temsirolimus.
Oncotarget. 5:1846–1855. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Tinker AV, Ellard S, Welch S, Moens F,
Allo G, Tsao MS, Squire J, Tu D, Eisenhauer EA and MacKay H: Phase
II study of temsirolimus (CCI-779) in women with recurrent,
unresectable, locally advanced or metastatic carcinoma of the
cervix. A trial of the NCIC clinical trials group (NCIC CTG IND
199). Gynecol Oncol. 130:269–274. 2013. View Article : Google Scholar : PubMed/NCBI
|
63
|
Serrano-Olvera A, Cetina L, Coronel J and
Dueñas-González A: Emerging drugs for the treatment of cervical
cancer. Expert Opin Emerg Drugs. 20:165–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
64
|
Chan S: Targeting the mammalian target of
rapamycin (mTOR): A new approach to treating cancer. Br J Cancer.
91:1420–1424. 2004. View Article : Google Scholar : PubMed/NCBI
|
65
|
Molinolo AA, Marsh C, El Dinali ME,
Gangane N, Jennison K, Hewitt S, Patel V, Seiwert TY and Gutkind
JS: mTOR as a molecular target in HPV-associated oral and cervical
squamous carcinomas. Clin Cancer Res. 18:2558–2568. 2012.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Ferreira CG, Alves FVG, Grazziotin R,
Erlich F, Moralez G, Carneiro MP, et al: Abstract CT403: A Phase I
study of oral administration of mTOR inhibitor everolimus (E) in
association with cisplatin (C) and radiotherapy (R) for the
treatment of locally advanced cervix cancer (LACC)-PHOENIX I.
Cancer Res. 74(Suppl 19): CT4032014. View Article : Google Scholar
|
67
|
Moroney J, Wheler J, Hong D, Naing A,
Falchook G, Bodurka D, Coleman R, Lu K, Xiao L and Kurzrock R:
Phase I clinical trials in 85 patients with gynecologic cancer: The
M. D. Anderson Cancer Center experience. Gynecol Oncol.
117:467–472. 2010. View Article : Google Scholar : PubMed/NCBI
|