Toll-like receptors and cutaneous melanoma (Review)
- Authors:
- Ilaria Coati
- Serena Miotto
- Irene Zanetti
- Mauro Alaibac
-
Affiliations: Department of Medicine, Unit of Dermatology, University of Padua, Padua 35128, Italy - Published online on: September 21, 2016 https://doi.org/10.3892/ol.2016.5166
- Pages: 3655-3661
This article is mentioned in:
Abstract
Burns EM and Yusuf N: Toll-like receptors and skin cancer. Front Immunol. 5:1352014. View Article : Google Scholar : PubMed/NCBI | |
Akira S, Takeda K and Kaisho T: Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol. 2:675–680. 2001. View Article : Google Scholar : PubMed/NCBI | |
Seneviratne AN, Sivagurunathan B and Monaco C: Toll-like receptors and macrophage activation in atherosclerosis. Clin Chim Acta. 413:3–14. 2012. View Article : Google Scholar : PubMed/NCBI | |
Portou MJ, Baker D, Abraham D and Tsui J: The innate immune system, toll-like receptors and dermal wound healing: A review. Vascul Pharmacol. 71:31–36. 2015. View Article : Google Scholar : PubMed/NCBI | |
Medzhitov R: Toll-like receptors and innate immunity. Nat Rev Immunol. 1:135–145. 2001. View Article : Google Scholar : PubMed/NCBI | |
Anderson KV, Bokla L and Nüsslein-Volhard C: Establishment of dorsal-ventral polarity in the Drosophila embryo: The induction of polarity by the Toll gene product. Cell. 42:791–798. 1985. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto C, Hudson KL and Anderson KV: The toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 52:269–279. 1988. View Article : Google Scholar : PubMed/NCBI | |
Lemaitre B, Nicolas E, Michaut L, Reichhart JM and Hoffmann JA: The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 86:973–983. 1996. View Article : Google Scholar : PubMed/NCBI | |
Medzhitov R, Preston-Hurlburt P and Janeway CA Jr: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388:394–397. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rock FL, Hardiman G, Timans JC, Kastelein RA and Bazan JF: A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA. 95:588–593. 1998. View Article : Google Scholar : PubMed/NCBI | |
Navi A, Patel H, Shaw S, Baker D and Tsui J: Therapeutic role of toll-like receptor modification in cardiovascular dysfunction. Vascul Pharmacol. 58:231–239. 2013. View Article : Google Scholar : PubMed/NCBI | |
Akira S and Takeda K: Toll-like receptor signaling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI | |
Adams S: Toll-like receptor agonists in cancer therapy. Immunotherapy. 1:949–964. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kawai T and Akira S: TLR signaling. Semin Immunol. 19:24–32. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang RF, Miyahara Y and Wang HY: Toll-like receptors and immune regulation: Implications for cancer therapy. Oncogene. 27:181–189. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hoebe K, Janssen E and Beutler B: The interface between innate and adaptive immunity. Nat Immunol. 5:971–974. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, Muranski P, Sanchez-Perez L, Palmer DC, Yu Z, et al: Toll-like receptors in tumor immunotherapy. Clin Cancer Res. 13:5280–5289. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huen AO and Rook AH: Toll receptor agonist therapy of skin cancer and cutaneous T-cell lymphoma. Curr Opin Oncol. 26:237–244. 2014. View Article : Google Scholar : PubMed/NCBI | |
Salaun B, Lebecque S, Matikainen S, Rimoldi D and Romero P: Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res. 13:4565–4574. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karin M and Greten FR: NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 5:749–759. 2005. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F and Mantovani A: Inflammation and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shacter E and Weitzman SA: Chronic inflammation and cancer. Oncology (Williston Park). 16:217–232. 2002.PubMed/NCBI | |
Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stanley MA: Imiquimod and the imidazoquinolones: Mechanism of action and therapeutic potential. Clin Exp Dermatol. 27:571–577. 2002. View Article : Google Scholar : PubMed/NCBI | |
Navi D and Huntley A: Imiquimod 5 percent cream and the treatment of cutaneous malignancy. Dermatol Online J. 10:42004.PubMed/NCBI | |
Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA, Raz E and Cottam HB: Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: Activation of Toll-like receptor 7. Proc Natl Acad Sci USA. 100:6646–6651. 2003. View Article : Google Scholar : PubMed/NCBI | |
Palamara F, Meindl S, Holcmann M, Lührs P, Stingl G and Sibilia M: Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol. 173:3051–3061. 2004. View Article : Google Scholar : PubMed/NCBI | |
Urosevic M, Dummer R, Conrad C, Beyeler M, Laine E, Burg G and Gilliet M: Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J Natl Cancer Inst. 97:1143–1153. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stary G, Bangert C, Tauber M, Strohal R, Kopp T and Stingl G: Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med. 204:1441–1451. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stephanou A and Latchman DS: Opposing actions of STAT-1 and STAT-3. Growth Factors. 23:177–182. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schön MP and Schön M: TLR7 and TLR8 as targets in cancer therapy. Oncogene. 27:190–199. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ahmed I and Berth-Jones J: Imiquimod: A novel treatment for lentigo maligna. Br J Dermatol. 143:843–845. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chapman MS, Spencer SK and Brennick JB: Histologic resolution of melanoma in situ (lentigo maligna) with 5% imiquimod cream. Arch Dermatol. 139:943–944. 2003. View Article : Google Scholar : PubMed/NCBI | |
Powell AM, Russell-Jones R and Barlow RJ: Topical imiquimod immunotherapy in the management of lentigo maligna. Clin Exp Dermatol. 29:15–21. 2004. View Article : Google Scholar : PubMed/NCBI | |
Naylor MF, Crowson N, Kuwahara R, Teague K, Garcia C, Mackinnis C, Haque R, Odom C, Jankey C and Cornelison RL: Treatment of lentigo maligna with topical imiquimod. Br J Dermatol. 149(Suppl 66): S66–S70. 2003. View Article : Google Scholar | |
Craythorne EE and Lawrence CM: Observational study of topical imiquimod immunotherapy in the treatment of difficult lentigo maligna. Clin Med Oncol. 2:551–554. 2008.PubMed/NCBI | |
Tzellos T, Kyrgidis A, Mocellin S, Chan AW, Pilati P and Apalla Z: Interventions for melanoma in situ, including lentigo maligna. Cochrane Database Syst Rev. 12:CD0103082014.PubMed/NCBI | |
Kallini JR, Jain SK and Khachemoune A: Lentigo maligna: Review of salient characteristics and management. Am J Clin Dermatol. 14:473–480. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nagore E and Botella-Estrada R: Imiquimod in the treatment of lentigo maligna. Actas Dermosifiliogr. 102:559–562. 2011.(In Spanish). View Article : Google Scholar : PubMed/NCBI | |
Erickson C and Miller SJ: Treatment options in melanoma in situ: Topical and radiation therapy, excision and Mohs surgery. Int J Dermatol. 49:482–491. 2010. View Article : Google Scholar : PubMed/NCBI | |
Powell AM, Robson AM, Russell-Jones R and Barlow RJ: Imiquimod and lentigo maligna: A search for prognostic features in a clinicopathological study with long-term follow-up. Br J Dermatol. 160:994–998. 2009. View Article : Google Scholar : PubMed/NCBI | |
Woodmansee CS and McCall MW: Recurrence of lentigo maligna and development of invasive melanoma after treatment of lentigo maligna with imiquimod. Dermatol Surg. 35:1286–1289. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lapresta A, García-Almagro D and Sejas AG: Amelanotic lentigo maligna managed with topical imiquimod. J Dermatol. 39:503–505. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zattra E, Salmaso R, Tonin E and Alaibac M: Achromic superficial spreading melanoma accidentally treated with imiquimod. Acta Derm Venereol. 92:107–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zattra E, Fortina AB, Bordignon M, Piaserico S and Alaibac M: Immunosuppression and melanocyte proliferation. Melanoma Res. 19:63–68. 2009. View Article : Google Scholar : PubMed/NCBI | |
Russo I, Piaserico S, Belloni-Fortina A and Alaibac M: Cutaneous melanoma in solid organ transplant patients. G Ital Dermatol Venereol. 149:389–394. 2014.PubMed/NCBI | |
Swope VB, Abdel-Malek Z, Kassem LM and Nordlund JJ: Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol. 96:180–185. 1991. View Article : Google Scholar : PubMed/NCBI | |
Tokura Y, Yamanaka K, Wakita H, Kurokawa S, Horiguchi D, Usui A, Sayama S and Takigawa M: Halo congenital nevus undergoing spontaneous regression. Involvement of T-cell immunity in involution and presence of circulating anti-nevus cell IgM antibodies. Arch Dermatol. 130:1036–1041. 1994. View Article : Google Scholar : PubMed/NCBI | |
Somani N, Martinka M, Crawford RI, Dutz JP and Rivers JK: Treatment of atypical nevi with imiquimod 5% cream. Arch Dermatol. 143:379–385. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bong AB, Bonnekoh B, Franke I, Schön M, Ulrich J and Gollnick H: Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology. 205:135–138. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wolf IH, Smolle J, Binder B, Cerroni L, Richtig E and Kerl H: Topical imiquimod in the treatment of metastatic melanoma to skin. Arch Dermatol. 139:273–276. 2003. View Article : Google Scholar : PubMed/NCBI | |
Arbiser JL, Bips M, Seidler A, Bonner MY and Kovach C: Combination therapy of imiquimod and gentian violet for cutaneous melanoma metastases. J Am Acad Dermatol. 67:e81–e83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steinmann A, Funk JO, Schuler G and von den Driesch P: Topical imiquimod treatment of a cutaneous melanoma metastasis. J Am Acad Dermatol. 43:555–556. 2000. View Article : Google Scholar : PubMed/NCBI | |
Maverakis E, Cornelius LA, Bowen GM, Phan T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM, et al: Metastatic melanoma-a review of current and future treatment options. Acta Derm Venereol. 95:516–524. 2015. View Article : Google Scholar : PubMed/NCBI | |
Turza K, Dengel LT, Harris RC, Patterson JW, White K, Grosh WW and Slingluff CL Jr: Effectiveness of imiquimod limited to dermal melanoma metastases, with simultaneous resistance of subcutaneous metastasis. J Cutan Pathol. 37:94–98. 2010. View Article : Google Scholar : PubMed/NCBI | |
Green DS, Bodman-Smith MD, Dalgleish AG and Fischer MD: Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br J Dermatol. 156:337–345. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schön MP, Wienrich BG, Drewniok C, Bong AB, Eberle J, Geilen CC, Gollnick H and Schön M: Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod. J Invest Dermatol. 122:1266–1276. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schön M and Schön MP: The antitumoral mode of action of imiquimod and other imidazoquinolines. Curr Med Chem. 14:681–687. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dockrell DH and Kinghorn GR: Imiquimod and resiquimod as novel immunomodulators. J Antimicrob Chemother. 48:751–755. 2001. View Article : Google Scholar : PubMed/NCBI | |
Thomsen LL, Topley P, Daly MG, Brett SJ and Tite JP: Imiquimod and resiquimod in a mouse model: Adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine. 22:1799–1809. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sabado RL, Pavlick A, Gnjatic S, Cruz CM, Vengco I, Hasan F, Spadaccia M, Darvishian F, Chiriboga L, Holman RM, et al: Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res. 3:278–287. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang BA, Cross JL, Najar HM and Dutz JP: Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine. 27:5791–5799. 2009. View Article : Google Scholar : PubMed/NCBI | |
Craft N, Birnbaum R, Quanquin N, Erfe MC, Quant C, Haskell J and Bruhn KW: Topical resiquimod protects against visceral infection with Leishmania infantum chagasi in mice. Clin Vaccine Immunol. 21:1314–1322. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mark KE, Spruance S, Kinghorn GR, Sacks SL, Slade HB, Meng TC, Selke S, Magaret A and Wald A: Three phase III randomized controlled trials of topical resiquimod 0.01-percent gel to reduce anogenital herpes recurrences. Antimicrob Agents Chemother. 58:5016–5023. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meyer T, Surber C, French LE and Stockfleth E: Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin Investig Drugs. 22:149–59. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C, Elenitsas R, Buchanan MA, Leahy DS, Watanabe R, et al: Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 126:1452–1461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tomai MA, Miller RL, Lipson KE, Kieper WC, Zarraga IE and Vasilakos JP: Resiquimod and other immune response modifiers as vaccine adjuvants. Expert Rev Vaccines. 6:835–847. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gunzer M, Riemann H, Basoglu Y, Hillmer A, Weishaupt C, Balkow S, Benninghoff B, Ernst B, Steinert M, Scholzen T, et al: Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood. 106:2424–2432. 2005. View Article : Google Scholar : PubMed/NCBI | |
Molenkamp BG, van Leeuwen PA, Meijer S, Sluijter BJ, Wijnands PG, Baars A, van den Eertwegh AJ, Scheper RJ and de Gruijl TD: Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res. 13:2961–2969. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pashenkov M, Goëss G, Wagner C, Hörmann M, Jandl T, Moser A, Britten CM, Smolle J, Koller S, Mauch C, et al: Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol. 24:5716–5724. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hofmann MA, Kors C, Audring H, Walden P, Sterry W and Trefzer U: Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother. 31:520–527. 2008. View Article : Google Scholar : PubMed/NCBI | |
Molenkamp BG, Sluijter BJ, van Leeuwen PA, Santegoets SJ, Meijer S, Wijnands PG, Haanen JB, van den Eertwegh AJ, Scheper RJ and de Gruijl TD: Local administration of PF-3512676 CpG-B instigates tumor-specific CD8+ T-cell reactivity in melanoma patients. Clin Cancer Res. 14:4532–4542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N, Li P, Pan H, Cai L and Ma Y: Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. Vaccine. 30:4790–4799. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, Connelly AK, Dibridge S, Mason G, Whiteside TL and Okada H: Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study or pediatric recurrent low-grade gliomas. Neuro Oncol. 18:1157–1168. 2016. View Article : Google Scholar : PubMed/NCBI |