1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Knowles HJ and Harris AL: Hypoxia and
oxidative stress in breast cancer. Hypoxia and tumourigenesis.
Breast Cancer Res. 3:318–322. 2001. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Serganova I, Humm J, Ling C and Blasberg
R: Tumor hypoxia imaging. Clin Cancer Res. 12:5260–5264. 2006.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Bos R, van der Groep P, Greijer AE,
Shvarts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ and van
der Wall E: Levels of hypoxia-inducible Factor-1alpha independently
predict prognosis in patients with lymph node negative breast
carcinoma. Cancer. 97:1573–1581. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci
USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yu AY, Frid MG, Shimoda LA, Wiener CM,
Stenmark K and Semenza GL: Temporal, spatial, and oxygen-regulated
expression of hypoxia-inducible factor-1 in the lung. Am J Physiol.
275:L818–L826. 1998.PubMed/NCBI
|
7
|
Huang LE, Arany Z, Livingston DM and Bunn
HF: Activation of hypoxia-inducible transcription factor depends
primarily upon redox-sensitive stabilization of its apha subunit. J
Biol Chem. 271:32253–32259. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bos R, Zhong H, Hanrahan CF, Mommers EC,
Semenza GL, Pinedo HM, Abeloff MD, Simons JW, van Diest PJ and van
der Wall E: Levels of hypoxia-inducible factor-1 alpha during
breast carcinogenesis. J Natl Cancer Inst. 93:309–314. 2001.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rajendran JG, Mankoff DA, O'Sullivan F,
Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG
and Krohn KA: Hypoxia and glucose metabolism in malignant tumors:
Evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose
positron emission tomography imaging. Clin Cancer Res.
10:2245–2252. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Burgman P, Odonoghue JA, Humm JL and Ling
CC: Hypoxia-induced increase in FDG uptake in MCF7 cells. J Nucl
Med. 42:170–175. 2001.PubMed/NCBI
|
11
|
Warburg O: The Metabolism of Tumors.
Richard R., Inc.; New York, NY: pp. 129–169. 1931
|
12
|
Song BI, Lee SW, Jeong SY, Chae YS, Lee
WK, Ahn BC and Lee J: 18F-FDG uptake by metastatic axillary lymph
nodes on pretreatment PET/CT as a prognostic factor for recurrence
in patients with invasive ductal breast cancer. J Nucl Med.
53:1337–1344. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Czernin J and Phelps ME: Positron emission
tomography scanning: Current and future applications. Annu Rev Med.
53:89–112. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Avril N, Rosé CA, Schelling M, Dose J,
Kuhn W, Bense S, Weber W, Ziegler S, Graeff H and Schwaiger M:
Breast imaging with positron emission tomography and fluorine-18
fluorodeoxyglucose: Use and limitations. J Clin Oncol.
18:3495–3502. 2000.PubMed/NCBI
|
15
|
Buck A, Schirrmeister H, Kühn T, Shen C,
Kalker T, Kotzerke J, Dankerl A, Glatting G, Reske S and Mattfeldt
T: FDG uptake in breast cancer: Correlation with biological and
clinical prognostic parameters. Eur J Nucl Med Mol Imaging.
29:1317–1323. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ueda S, Tsuda H, Asakawa H, Shigekawa T,
Fukatsu K, Kondo N, Yamamoto M, Hama Y, Tamura K, Ishida J, et al:
Clinicopathological and prognosti relevance of uptake level using
18F-fluorodeoxyglucose positron emission tomography/computed
tomography fusion imaging (18F-FDG PET/CT) in primary breast
cancer. Jpn J Clin Oncol. 38:250–258. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sanli Y, Kuyumcu S, Ozkan ZG, Işİk G,
Karanlik H, Guzelbey B, Turkmen C, Ozel S, Yavuz E and Mudun A:
Increased FDG uptake in breast cancer is associated with prognostic
factors. Ann Nucl Med. 26:345–350. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fitzgibbons PL, Page DL, Weaver D, Thor
AD, Allred DC, Clark GM, Ruby SG, O'Malley F, Simpson JF, Connolly
JL, et al: Prognostic factors in breast cancer. Collage of american
pathologists consensus statement 1999. Arch Pathol Lab Med.
124:966–978. 2000.PubMed/NCBI
|
19
|
Lakhani SR, Ellis IO, Schnitt SJ, Tan PH
and van de Vijver MJ: WHO Classification of tumours of the breast.
4th. IARC; Lyon, France: 2012
|
20
|
Dales JP, Garcia S, Meunier-Carpentier S,
Andrac-Meyer L, Haddad O, Lavaut MN, Allasia C, Bonnier P and
Charpin C: Overexpression of hypoxia-inducible factor HIF-1 alpha
predicts early relapse in breast cancer: Retrospective study in a
series of 745 patients. Int J Cancer. 116:734–739. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cohen DA, Dabbs DJ, Cooper KL, Amin M,
Jones TE, Jones MW, Chivukula M, Trucco GA and Bhargava R:
Interobserver agreement among pathologists for semiquantitative
hormone receptorscoring in breast carcinoma. Am J Clin Pathol.
138:796–802. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Koolen BB, Peeters MJ Vrancken, Wesseling
J, Lips EH, Vogel WV, Aukema TS, van Werkhoven E, Gilhuijs KG,
Rodenhuis S, Rutgers EJ and Valdés Olmora RA: Association of
primary tumour FDG uptake with clinical, histopathological and
molecular characteristics in breast cancer patients scheduled for
neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 39:1830–1838.
2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Groheux D, Giacchetti S, Moretti JL,
Porcher R, Espié M, Lehmann-Che J, de Roquancourt A, Hamy AS,
Cuvier C, Vercellino L and Hindié E: Correlation of high 18F-FDG
uptake to clinical, pathological and biological prognostic factors
in breast cancer. Eur J Nucl Med Mol Imaging. 38:426–435. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Heudel P, Cimarelli S, Montella A,
Bouteille C and Mognetti T: Value of PET-FDG in primary breast
cancer based on histopathological and immunohistochemical
prognostic factors. Int J Clin Oncol. 15:588–593. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bos R, van Der Hoeven JJ, van Der Wall E,
van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL,
Hoekstra OS, Lammertsma AA and Molthoff CF: Bioglogic correlates of
(18)fluorodeoxyglucose uptake in human breast cancer measured by
positron emission tomography. J Clin Oncol. 20:379–387. 2002.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Oshida M, Uno K, Suzuki M, Nagashima T,
Hashimoto H, Yagata H, Shishikura T, Imazeki K and Nakajima N:
Predicting the prognoses of breast carcinoma patients with positron
emission tomography using 2-deoxy-2-fluoro[18F]-D-glucose. Cancer.
82:2227–2234. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Buck AC, Schirrmeister HH, Guhlmann CA,
Diederichs CG, Shen C, Buchmann I, Kotzerke J, Birk D, Mattfeldt T
and Reske SN: Ki-67 immunostaining in pancreatic cancer and chronic
active pancreatitis: Does in vivo FDG uptake correlate with
proliferative activity? J Nucl Med. 42:721–725. 2001.PubMed/NCBI
|
28
|
Higashi K, Clavo AC and Wahl RL: Does FDG
uptake measure proliferative activity of human cancer cells? In
vitro comparison with DNA flow cytometry and tritiated thymidine
uptake. J Nucl Med. 34:414–419. 1993.PubMed/NCBI
|
29
|
Simpson JF, Gray R, Dressler LG, Cobau CD,
Falkson CI, Gilchrist KW, Pandya KJ, Page DL and Robert NJ:
Prognostic value of histologic grade and proliferative activity in
axillary node-positive breast cancer: Results from the Eastern
Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol.
18:2059–2069. 2000.PubMed/NCBI
|
30
|
Gil-Rendo A, Martínez-Regueira F, Zornoza
G, Garcia-Velloso MJ, Beorlegui C and Rodriguez-Spiteri N:
Association between [18F]fluorodeoxyglucose uptake and prognostic
parameters in breast cancer. Br J Surg. 96:166–170. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Nakajo M, Kajiya Y, Kaneko T, Kaneko Y,
Takasaki T, Tani A, Ueno M, Koriyama C and Nakajo M: FDG PET/CT and
diffusion-weighted imaging for breast cancer: Prognostic value of
maximum standardized uptake values and apparent diffusion
coefficient values of the primary lesion. Eur J Nucl Med Mol
Imaging. 37:2011–2020. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Osborne JR, Port E, Gonen M, Doane A,
Yeung H, Gerald W, Cook JB and Larson S: 18F-FDG PET of locally
invasive breast cancer and association of estrogen receptor status
with standardized uptake value: Microarray and immunohistochemical
analysis. J Nucl Med. 51:543–550. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Berriolo-Riedinger A, Touzery C, Riedinger
JM, Toubeau M, Coudert B, Arnould L, Boichot C, Cochet A, Fumoleau
P and Brunotte F: [18F]FDG-PET predicts complete pathological
response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl
Med Mol Imaging. 34:1915–1924. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kumar R, Chauhan A, Zhuang H, Chandra P,
Schnall M and Alavi A: Clinicopathologic factors associated with
false negative FDG-PET in primary breast cancer. Breast Cancer Res
Treat. 98:267–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Crippa F, Seregni E, Agresti R, Chiesa C,
Pascali C, Bogni A, Decise D, De Sanctis V, Greco M, Daidone MG and
Bombardieri E: Association between [18F]fluorodeoxyglucose uptake
and postoperative histopathology, hormone receptor status,
thymidine labelling index and p53 in primary breast cancer: A
preliminary observation. Eur J Nucl Med. 25:1429–1434. 1998.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Avril N, Rosé CA, Schelling M, Dose J,
Kuhn W, Bense S, Weber W, Ziegler S, Graeff H and Schwaiger M:
Breast imaging with positron emission tomography and fluorine-18
fluorodeoxyglucose: Use and limitations. J Clin Oncol.
18:3495–3502. 2000.PubMed/NCBI
|
37
|
Kim BS and Sung SH: Usefulness of 18F-FDG
uptake with clinicopathologic and immunohistochemical prognostic
factors in breast cancer. Ann Nucl Med. 26:175–183. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Mavi A, Cermik TF, Urhan M, Puskulcu H,
Basu S, Yu JQ, Zhuang H, Czerniecki B and Alavi A: The effects of
estrogen, progesterone, and C-erbB-2 receptor states on 18F-FDG
uptake of primary breast cancer lesions. J Nucl Med. 48:1266–1272.
2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Romond EH, Perez EA, Bryant J, Suman VJ,
Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman
PA, et al: Trastuzumab plus adjuvant chemotherapy for operable
HER2-positive breast cancer. N Engl J Med. 353:1673–1684. 2005.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Piccart M, Lohrish C, Di Leo A and
Larsimont D: The predictive value of HER2 in breast cancer.
Oncology. 61(Suppl 2): 73–82. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gonzalez-Angulo AM, Hortobagyi GN and
Esteva FJ: Adjuvant therapy with trastuzumab for HER-2/neu-positive
breast cancer. Oncologist. 11:857–867. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ikenaga N, Otomo N, Toyofuku A, Ueda Y,
Toyoda K, Hayashi T, Nishikawa K and Tanaka M: Standardized uptake
values for breast carcinomas assessed by
fluorodeoxyglucose-positron emission tomography correlate with
prognostic factors. Am Surg. 73:1151–1157. 2007.PubMed/NCBI
|
43
|
Spence AM, Muzi M, Graham MM, O'Sullivan
F, Krohn KA, Link JM, Lewellen TK, Lewellen B, Freeman SD, Berger
MS and Ojemann GA: Glucose metebolism in human malignant gliomas
measured quantitatively with PET, 1-[C-11]glucose and FDG: Analysis
of the FDG lumped constant. J Nucl Med. 39:440–448. 1998.PubMed/NCBI
|
44
|
Kallinowski F, Schlenger KH, Kloes M,
Stohrer M and Vaupel P: Tumor blood flow: The principal modulator
of oxidative and glycolytic metablism and of the metabolic
micromilieu of human tumor xenografts in vivo. Int J Cancer.
44:266–272. 1989. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fleming IN, Manavaki R, Blower PJ, West C,
William KJ, Harris AL, Domarkas J, Lord S, Baldry C and Gilbert FJ:
Imaging tumour hypoxia with positron emission tomography. Br J
Cancer. 112:238–250. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Evans SM, Hahn SM, Magarelli DP and Koch
CJ: Hypoxic heterogeneity in human tumors: EF5 binding,
vasculature, necrosis and proliferation. Am J Clin Oncol.
24:467–472. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Clavo AC, Brown RS and Wahl RL:
Fluorodeoxyglucose uptake in human cancer cell lines is increased
by hypoxia. J Nucl Med. 36:1625–1632. 1995.PubMed/NCBI
|
48
|
Toba H, Kondo K, Sadohara Y, Otsuka H,
Morimoto M, Kajiura K, Nakagawa Y, Yoshida M, Kawakami Y, Takizawa
H, et al: 18F-fluorodeoxyglucose positron emission
tomography/computed tomography and the relationship between
fluorodeoxyglucose uptake and the expression of hypoxia-inducible
factor-1α, glucose transporter-1 and vascular endothelial growth
factor in thymic epithelial tumours. Eur J Cardiothorac Surg.
44:105–112. 2013. View Article : Google Scholar
|