1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ho JW, Pang RW, Lau C, Sun CK, Yu WC, Fan
ST and Poon RT: Significance of circulating endothelial progenitor
cells in hepatocellular carcinoma. Hepatology. 44:836–843. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhu AX, Sahani DV, Duda DG, di Tomaso E,
Ancukiewicz M, Catalano OA, Sindhwani V, Blaszkowsky LS, Yoon SS,
Lahdenranta J, et al: Efficacy, safety, and potential biomarkers of
sunitinib monotherapy in advanced hepatocellular carcinoma: A phase
II study. J Clin Oncol. 27:3027–3035. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bayo J, Marrodán M, Aquino JB, Silva M,
García MG and Mazzolini G: The therapeutic potential of bone
marrow-derived mesenchymal stromal cells on hepatocellular
carcinoma. Liver Int. 34:330–342. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shih YT, Wang MC, Zhou J, Peng HH, Lee DY
and Chiu JJ: Endothelial progenitors promote hepatocarcinoma
intrahepatic metastasis through monocyte chemotactic protein-1
induction of microRNA-21. Gut. 64:1132–1147. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Barajas M, Franchi F, Clavel C, Aranguren
XL, Kramer MG, Abizanda G, Merino J, Moreno C, Gárate L, Guitart A,
et al: Multipotent adult progenitor cells (MAPC) contribute to
hepatocarcinoma neovasculature. Biochem Biophys Res Commun.
364:92–99. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mathieu S, Gerolami R, Luis J, Carmona S,
Kol O, Crescence L, Garcia S, Borentain P and El-Battari A:
Introducing alpha(1,2)-linked fucose into hepatocarcinoma cells
inhibits vasculogenesis and tumor growth. Int J Cancer.
121:1680–1689. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kioi M, Vogel H, Schultz G, Hoffman RM,
Harsh GR and Brown JM: Inhibition of vasculogenesis, but not
angiogenesis, prevents the recurrence of glioblastoma after
irradiation in mice. J Clin Invest. 120:694–705. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hanahan D and Coussens LM: Accessories to
the crime: Functions of cells recruited to the tumor
microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kaplan RN, Riba RD, Zacharoulis S, Bramley
AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et
al: VEGFR1-positive haematopoietic bone marrow progenitors initiate
the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hiratsuka S, Watanabe A, Aburatani H and
Maru Y: Tumour-mediated upregulation of chemoattractants and
recruitment of myeloid cells predetermines lung metastasis. Nat
Cell Biol. 8:1369–1375. 2006. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Karnoub AE, Dash AB, Vo AP, Sullivan A,
Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg
RA: Mesenchymal stem cells within tumour stroma promote breast
cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Erler JT, Bennewith KL, Cox TR, Lang G,
Bird D, Koong A, Le QT and Giaccia AJ: Hypoxia-induced lysyl
oxidase is a critical mediator of bone marrow cell recruitment to
form the premetastatic niche. Cancer Cell. 15:35–44. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Dawson MR, Duda DG, Chae SS, Fukumura D
and Jain RK: VEGFR1 activity modulates myeloid cell infiltration in
growing lung metastases but is not required for spontaneous
metastasis formation. PLoS One. 4:e65252009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Du R, Lu KV, Petritsch C, Liu P, Ganss R,
Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z and Bergers G:
HIF1alpha induces the recruitment of bone marrow-derived vascular
modulatory cells to regulate tumor angiogenesis and invasion.
Cancer Cell. 13:206–220. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ahn GO and Brown JM: Matrix
metalloproteinase-9 is required for tumor vasculogenesis but not
for angiogenesis: Role of bone marrow-derived myelomonocytic cells.
Cancer Cell. 13:193–205. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rafii S, Meeus S, Dias S, Hattori K,
Heissig B, Shmelkov S, Rafii D and Lyden D: Contribution of
marrow-derived progenitors to vascular and cardiac regeneration.
Semin Cell Dev Biol. 13:61–67. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Grunewald M, Avraham I, Dor Y,
Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L,
Abramovitch R and Keshet E: VEGF-induced adult neovascularization:
Recruitment, retention, and role of accessory cells. Cell.
124:175–189. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Stockmann C, Doedens A, Weidemann A, Zhang
N, Takeda N, Greenberg JI, Cheresh DA and Johnson RS: Deletion of
vascular endothelial growth factor in myeloid cells accelerates
tumorigenesis. Nature. 456:814–818. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hooper AT, Butler JM, Nolan DJ, Kranz A,
Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K, et al:
Engraftment and reconstitution of hematopoiesis is dependent on
VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell
Stem Cell. 4:263–274. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue
Q, Chen J, Gao DM and Bao WH: Establishment of cell clones with
different metastatic potential from the metastatic hepatocellular
carcinoma cell line MHCC97. World J Gastroenterol. 7:630–636.
2001.PubMed/NCBI
|
22
|
Zhang T, Sun HC, Xu Y, Zhang KZ, Wang L,
Qin LX, Wu WZ, Liu YK, Ye SL and Tang ZY: Overexpression of
platelet-derived growth factor receptor alpha in endothelial cells
of hepatocellular carcinoma associated with high metastatic
potential. Clin Cancer Res. 11:8557–8563. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ahn GO and Brown JM: Role of endothelial
progenitors and other bone marrow-derived cells in the development
of the tumor vasculature. Angiogenesis. 12:159–164. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li B, Pozzi A and Young PP: TNFalpha
accelerates monocyte to endothelial transdifferentiation in tumors
by the induction of integrin alpha5 expression and adhesion to
fibronectin. Mol Cancer Res. 9:702–711. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wara AK, Foo S, Croce K, Sun X, Icli B,
Tesmenitsky Y, Esen F, Lee JS, Subramaniam M, Spelsberg TC, et al:
TGF-β1 signaling and Krüppel-like factor 10 regulate bone
marrow-derived proangiogenic cell differentiation, function, and
neovascularization. Blood. 118:6450–6460. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
De Palma M, Venneri MA and Naldini L: In
vivo targeting of tumor endothelial cells by systemic delivery of
lentiviral vectors. Hum Gene Ther. 14:1193–1206. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
De Palma M, Venneri MA, Roca C and Naldini
L: Targeting exogenous genes to tumor angiogenesis by
transplantation of genetically modified hematopoietic stem cells.
Nat Med. 9:789–795. 2003. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi
JS, Bambino K, Gupta S, Heikamp E, McDevitt MR, Scheinberg DA,
Benezra R and Mittal V: Bone marrow-derived endothelial progenitor
cells are a major determinant of nascent tumor neovascularization.
Genes Dev. 21:1546–1558. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kozin SV, Kamoun WS, Huang Y, Dawson MR,
Jain RK and Duda DG: Recruitment of myeloid but not endothelial
precursor cells facilitates tumor regrowth after local irradiation.
Cancer Res. 70:5679–5685. 2010. View Article : Google Scholar : PubMed/NCBI
|