1
|
Kerbel RS: Tumor angiogenesis. N Engl J
Med. 358:2039–2049. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Olsson AK, Dimberg A, Kreuger J and
Claesson-Welsh L: VEGF receptor signalling-in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Song G, Li Y and Jiang G: Role of
VEGF/VEGFR in the pathogenesis of leukemias and as treatment
targets (Review). Oncol Rep. 28:1935–1944. 2012.PubMed/NCBI
|
4
|
Estey E and Döhner H: Acute myeloid
leukaemia. Lancet. 368:1894–1907. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
O'Donnell MR, Abboud CN, Altman J,
Appelbaum FR, Arber DA, Attar E, Borate U, Coutre SE, Damon LE,
Goorha S, et al: Acute myeloid leukemia. J Natl Compr Canc Netw.
10:984–1021. 2012.PubMed/NCBI
|
6
|
Hou HA, Chou WC, Lin LI, Tang JL, Tseng
MH, Huang CF, Yao M, Chen CY, Tsay W and Tien HF: Expression of
angiopoietins and vascular endothelial growth factors and their
clinical significance in acute myeloid leukemia. Leuk Res.
32:904–912. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kampen KR, Ter Elst A and de Bont ES:
Vascular endothelial growth factor signaling in acute myeloid
leukemia. Cell Mol Life Sci. 70:1307–1317. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Padró T, Bieker R, Ruiz S, Steins M,
Retzlaff S, Bürger H, Büchner T, Kessler T, Herrera F, Kienast J,
et al: Overexpression of vascular endothelial growth factor (VEGF)
and its cellular receptor KDR (VEGFR-2) in the bone marrow of
patients with acute myeloid leukemia. Leukemia. 16:1302–1310. 2002.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hiramatsu A, Miwa H, Shikami M, Ikai T,
Tajima E, Yamamoto H, Imai N, Hattori A, Kyo T, Watarai M, et al:
Disease-specific expression of VEGF and its receptors in AML cells:
Possible autocrine pathway of VEGF/type1 receptor of VEGF in t(15;
17) AML and VEGF/type2 receptor of VEGF in t(8; 21) AML. Leuk
Lymphoma. 47:89–95. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Santos SC and Dias S: Internal and
external autocrine VEGF/KDR loops regulate survival of subsets of
acute leukemia through distinct signaling pathways. Blood.
103:3883–3889. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Garzon R, Garofalo M, Martelli MP,
Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG,
Schnittger S, Haferlach T, et al: Distinctive microRNA signature of
acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin.
Proc Natl Acad Sci USA. 105:3945–3950. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Garzon R, Volinia S, Liu CG,
Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K,
Alder H, Nakamura T, et al: MicroRNA signatures associated with
cytogenetics and prognosis in acute myeloid leukemia. Blood.
111:3183–3189. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ritchie WJ, Flamant S and Rasko J:
MicroRNA in acute myeloid leukemia. N Engl J Med. 359:653author
reply 653–654. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Havelange V, Stauffer N, Heaphy CC,
Volinia S, Andreeff M, Marcucci G, Croce CM and Garzon R:
Functional implications of microRNAs in acute myeloid leukemia by
integrating microRNA and messenger RNA expression profiling.
Cancer. 117:4696–4706. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wei J, Zhao ZX, Li Y, Zhou ZQ and You TG:
Cortactin expression confers a more malignant phenotype to gastric
cancer SGC-7901 cells. World J Gastroenterol. 20:3287–3300. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Hayashita Y, Osada H, Tatematsu Y, Yamada
H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y and
Takahashi T: A polycistronic microRNA cluster, miR-17-92, is
overexpressed in human lung cancers and enhances cell
proliferation. Cancer Res. 65:9628–9632. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li S, Moffett HF, Lu J, Werner L, Zhang H,
Ritz J, Neuberg D, Wucherpfennig KW, Brown JR and Novina CD:
MicroRNA expression profiling identifies activated B cell status in
chronic lymphocytic leukemia cells. PloS One. 6:e169562011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wei R, Yuan D, Wang T, Zhou C, Lin F, Chen
H, Wu H, Yang S, Wang Y, Liu J, et al: Characterization, tissue
distribution and regulation of agouti-related protein (AgRP) in a
cyprinid fish (Schizothorax prenanti). Gene. 527:193–200. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ward IM and Chen J: Histone H2AX is
phosphorylated in an ATR-dependent manner in response to
replicational stress. J Biol Chem. 276:47759–47762. 2001.PubMed/NCBI
|
22
|
Gao W, Yu Y, Cao H, Shen H, Li X, Pan S
and Shu Y: Deregulated expression of miR-21, miR-143 and miR-181a
in non small cell lung cancer is related to clinicopathologic
characteristics or patient prognosis. Biomed Pharmacother.
64:399–408. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lutherborrow M, Bryant A, Jayaswal V,
Agapiou D, Palma C, Yang YH and Ma DD: Expression profiling of
cytogenetically normal acute myeloid leukemia identifies microRNAs
that target genes involved in monocytic differentiation. Am J
Hematol. 86:2–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kirschner MB, Kao SC, Edelman JJ,
Armstrong NJ, Vallely MP, van Zandwijk N and Reid G: Haemolysis
during sample preparation alters microRNA content of plasma. PloS
One. 6:e241452011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Koch KR, Refaian N, Hos D, Schlereth SL,
Bosch JJ, Cursiefen C and Heindl LM: Autocrine impact of VEGF-A on
uveal melanoma cells. Invest Ophthalmol Vis Sci. 55:2697–2704.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Larsen AK, Poindessous V, Sabbah M, de
Gramont A and Mesange P: Autocrine signaling plays a major role in
the response of colorectal cancer cells to VEGF blockage.
International Journal of Molecular Medicine. 34:S22. 2014.
|
27
|
Barr MP, Gray G, Gately KA, Harns E,
Fallon PG, Davies AM, Richard DJ, Pidgeon GP, Cuffe S, Finn S and
O'Byrne KJ: VEGF autocrine survival signalling is mediated via
neuropilin 1 receptor in NSCLC cells. Lung Cancer. 83:S5. 2014.
View Article : Google Scholar
|
28
|
Ji Y, Chen S, Li K, Xiao X, Xu T and Zheng
S: Upregulated autocrine vascular endothelial growth factor
(VEGF)/VEGF receptor-2 loop prevents apoptosis in
haemangioma-derived endothelial cells. Brit J Dermatol. 170:78–86.
2014. View Article : Google Scholar
|
29
|
Barr MP, Gray SG, Gately KA and O'Byrne K:
Vegf is an autocrine survival factor in non-small cell lung cancer,
mediating its effects via the neuropilin-1 receptor. J Thorac
Oncol. 8:S426. 2013.
|
30
|
Lee S, Chen TT, Barber CL, Jordan MC,
Murdock J, Desai S, Ferrara N, Nagy A, Roos KP and Iruela-Arispe
ML: Autocrine VEGF signaling is required for vascular homeostasis.
Cell. 130:691–703. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Reinmuth N, Liu W, Jung YD, Ahmad SA,
Shaheen RM, Fan F, Bucana CD, McMahon G, Gallick GE and Ellis LM:
Induction of VEGF in perivascular cells defines a potential
paracrine mechanism for endothelial cell survival. FASEB J.
15:1239–1241. 2001.PubMed/NCBI
|
32
|
Bellamy WT, Richter L, Sirjani D, Roxas C,
Glinsmann-Gibson B, Frutiger Y, Grogan TM and List AF: Vascular
endothelial cell growth factor is an autocrine promoter of abnormal
localized immature myeloid precursors and leukemia progenitor
formation in myelodysplastic syndromes. Blood. 97:1427–1434. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
van Haaften G and Agami R: Tumorigenicity
of the miR-17-92 cluster distilled. Genes Dev. 24:1–4. 2010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Volinia S, Calin GA, Liu CG, Ambs S,
Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et
al: A microRNA expression signature of human solid tumors defines
cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Poliseno L, Salmena L, Riccardi L, Fornari
A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G, et
al: Identification of the miR-106b~25 microRNA cluster as a
proto-oncogenic PTEN-targeting intron that cooperates with its host
gene MCM7 in transformation. Sci Signal. 3:ra292010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xiao C, Srinivasan L, Calado DP, Patterson
HC, Zhang B, Wang J, Henderson JM, Kutok JL and Rajewsky K:
Lymphoproliferative disease and autoimmunity in mice with increased
miR-17-92 expression in lymphocytes. Nat Immunol. 9:405–414. 2008.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ventura A, Young AG, Winslow MM, Lintault
L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone
JR, et al: Targeted deletion reveals essential and overlapping
functions of the miR-17- through 92 family of miRNA clusters. Cell.
132:875–886. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fang L, Deng Z, Shatseva T, Yang J, Peng
C, Du WW, Yee AJ, Ang LC, He C, Shan SW and Yang BB: MicroRNA
miR-93 promotes tumor growth and angiogenesis by targeting
integrin-β8. Oncogene. 30:806–821. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Fang L, Du WW, Yang W, Rutnam ZJ, Peng C,
Li H, O'Malley YQ, Askeland RW, Sugg S, Liu M, et al: MiR-93
enhances angiogenesis and metastasis by targeting LATS2. Cell
Cycle. 11:4352–4365. 2012. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Jinushi T, Shibayama Y, Kinoshita I,
Oizumi S, Jinushi M, Aota T, Takahashi T, Horita S, Dosaka-Akita H
and Iseki K: Low expression levels of microRNA-124-5p correlated
with poor prognosis in colorectal cancer via targeting of SMC4.
Cancer Med. 3:1544–1552. 2014. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Chen Q, Lu G, Cai Y, Li Y, Xu R, Ke Y and
Zhang S: MiR-124-5p inhibits the growth of high-grade gliomas
through posttranscriptional regulation of LAMB1. Neuro Oncol.
16:637–651. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang X, Du WW, Li H, Liu F, Khorshidi A,
Rutnam ZJ and Yang BB: Both mature miR-17-5p and passenger strand
miR-17-3p target TIMP3 and induce prostate tumor growth and
invasion. Nucleic Acids Res. 41:9688–9704. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shan SW, Fang L, Shatseva T, Rutnam ZJ,
Yang X, Du W, Lu W, Xuan JW, Deng Z and Yang BB: Mature miR-17-5p
and passenger miR-17-3p induce hepatocellular carcinoma by
targeting PTEN, GalNT7 and vimentin in different signal pathways. J
Cell Sci. 126:1517–1530. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ruan GR, Liu YR, Chen SS, Fu JY, Chang Y,
Qin YZ, Li JL, Yu H and Wang H: Effect of antisense VEGF cDNA
transfection on the growth of chronic myeloid leukemia K562 cells
in vitro and in nude mice. Leuk Res. 28:763–769. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bamba H, Ota S, Kato A, Kawamoto C and
Fujiwara K: Prostaglandins up-regulate vascular endothelial growth
factor production through distinct pathways in differentiated U937
cells. Biochem Biophys Res Commun. 273:485–491. 2000. View Article : Google Scholar : PubMed/NCBI
|