1
|
Shapiro WR, Green SB, Burger PC, Mahaley
MS Jr, Selker RG, VanGilder JC, Robertson JT, Ransohoff J, Mealey J
Jr and Strike TA: Randomized trial of three chemotherapy regimens
and two radiotherapy regimens and two radiotherapy regimens in
postoperative treatment of malignant glioma. Brain Tumor
Cooperative Group Trial 8001. J Neurosurg. 71:1–9. 1989. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Westphal M, Ram Z, Riddle V, Hilt D and
Bortey E: Executive Committee of the Gliadel Study Group: Gliadel
wafer in initial surgery for malignant glioma: Long-term follow-up
of a multicenter controlled trial. Acta Neurochir (Wien).
148:269–275. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lacroix M, AbiSaid D, Fourney DR, Gokaslan
ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ,
Holland E, et al: A multivariate analysis of 416 patients with
glioblastoma multiforme: Prognosis, extent of resection and
survival. J Neurosurg. 95:190–198. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sanai N, Polley MY, McDermott MW, Parsa AT
and Berger MS: An extent of resection threshold for newly diagnosed
glioblastomas. J Neurosurg. 115:3–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Laperriere N, Zuraw L and Cairncross G:
Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology
Disease Site Group: Radiotherapy for newly diagnosed malignant
glioma in adults: A systematic review. Radiother Oncol. 64:259–273.
2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wen PY, Macdonald DR, Reardon DA,
Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert
MR, Lassman AB, et al: Updated response assessment criteria for
high-grade gliomas: Response assessment in neuro-oncology working
group. J Clin Oncol. 28:1963–1972. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Coburger J, Engelke J, Scheuerle A, Thal
DR, Hlavac M, Wirtz CR and König R: Tumor detection with
5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced
intraoperative MRI at the border of contrast-enhancing lesions: A
prospective study based on histopathological assessment. Neurosurg
Focus. 36:E32014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Claes A, Idema AJ and Wesseling P: Diffuse
glioma growth: A guerilla war. Acta Neuropathol. 114:443–458. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hutterer M, Hattingen E, Palm C,
Proescholdt MA and Hau P: Current standards and new concepts in MRI
and PET response assessment of antiangiogenic therapies in
high-grade glioma patients. Neuro Oncol. 17:784–800. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Earnest F IV, Kelly PJ, Scheithauer BW,
Kall BA, Cascino TL, Ehman RL, Forbes GS and Axley PL: Cerebral
astrocytomas: Histopathologic correlation of MR and CT contrast
enhancement with stereotactic biopsy. Radiology. 166:823–827. 1988.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang Y, Alkasab TK, Narin O, Nazarian RM,
Kaewlai R, Kay J and Abujudeh HH: Incidence of nephrogenic systemic
fibrosis after adoption of restrictive gadolinium-based contrast
agent guidelines. Radiology. 260:105–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ishizuka M, Hagiya Y, Mizokami Y, Honda K,
Tabata K, Kamachi T, Takahashi K, Abe F, Tanaka T, Nakajima M, et
al: Porphyrins in urine after administration of 5-aminolevulinic
acid as a potential tumor marker. Photodiagnosis Photodyn Ther.
8:328–331. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yamamoto J, Yamamoto S, Hirano T, Li S,
Koide M, Kohno E, Okada M, Inenaga C, Tokuyama T, Yokota N, et al:
Monitoring of singlet oxygen is useful for predicting the
photodynamic effects in the treatment for experimental glioma. Clin
Cancer Res. 12:7132–7139. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ishizuka M, Abe F, Sano Y, Takahashi K,
Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura S and Tanaka T:
Novel development of 5-aminolevurinic acid (ALA) in cancer
diagnoses and therapy. Int Immunopharmacol. 11:358–365. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Yamamoto J, Ogura S, Tanaka T, Kitagawa T,
Nakano Y, Saito T, Takahashi M, Akiba D and Nishizawa S:
Radiosensitizing effect of 5-aminolevulinic acid-induced
protoporphyrin IX in glioma cells in vitro. Oncol Rep.
27:1748–1752. 2012.PubMed/NCBI
|
17
|
Stummer W, Stocker S, Wagner S, Stepp H,
Fritsch C, Goetz C, Goetz AE, Kiefmann R and Reulen HJ:
Intraoperative detection of malignant gliomas by 5-aminolevulinic
acid-induced porphyrin fluorescence. Neurosurgery. 42:518–526.
1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Stummer W, Pichlmeier U, Meinel T,
Wiestler OD, Zanella F and Reulen HJ: ALA-Glioma Study Group:
Fluorescence-guided surgery with 5-aminolevulinic acid for
resection of malignant glioma: A randomised controlled multicentre
phase III trial. Lancet Oncol. 7:392–401. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Junga CI, Yang JI, Park CH, Lee JB and
Park HR: Formation of the Metal Complexes between Protoporphyrin IX
and Divalent Metal Cations in the EnvironmentMolecular
Environmental Soil Science at the Interfaces in the Earth's
Critical Zone. Xu J and Huang PM: Springer Berlin Heidelberg;
Berlin: pp. 97–99. 2010, View Article : Google Scholar
|
20
|
Stummer W, Novotny A, Stepp H, Goetz C,
Bise K and Reulen HJ: Fluorescence-guided resection of glioblastoma
multiforme by using 5-aminolevulinic acid-induced porphyrins: A
prospective study in 52 consecutive patients. J Neurosurg.
93:1003–1013. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yamamoto J, Ogura S, Shimajiri S, Nakano
Y, Akiba D, Kitagawa T, Ueta K, Tanaka T and Nishizawa S:
5-aminolevulinic acid-induced protoporphyrin IX with multi-dose
ionizing irradiation enhances host antitumor response and strongly
inhibits tumor growth in experimental glioma in vivo. Mol Med Rep.
11:1813–1819. 2015.PubMed/NCBI
|
22
|
Mlkvy P, Messmann H, Pauer M, Stewart JC,
Millson CE, MacRobert AJ and Bown SG: Distribution and photodynamic
effects of meso-tetrahydroxyphenylchlorin (mTHPC) in the pancreas
and adjacent tissues in the Syrian golden hamster. Br J Cancer.
73:1473–1479. 1996. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yamamoto J, Kakeda S, Shimajiri S,
Takahashi M, Watanabe K, Kai Y, Moriya J, Korogi Y and Nishizawa S:
Tumor consistency of pituitary macroadenomas: Predictive analysis
on the basis of imaging features with contrast-enhanced 3D FIESTA
at 3T. AJNR Am J Neuroradiol. 35:297–303. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pierallini A, Caramia F, Falcone C,
Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S,
Ferrante L and Bozzao L: Pituitary macroadenomas: Preoperative
evaluation of consistency with diffusion-weighted MR
imaging-initial experience. Radiology. 239:223–231. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Watanabe K, Kakeda S, Yamamoto J, Ide S,
Ohnari N, Nishizawa S and Korogi Y: Prediction of hard meningiomas:
Quantitative evaluation based on the magnetic resonance signal
intensity. Acta Radiol. 57:333–340. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kreisl TN, Kim L, Moore K, Duic P, Royce
C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, et al:
Phase II trial of single-agent bevacizumab followed by bevacizumab
plus irinotecan at tumor progression in recurrent glioblastoma. J
Clin Oncol. 27:740–745. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hasselbalch B, Lassen U, Hansen S,
Holmberg M, Sørensen M, Kosteljanetz M, Broholm H, Stockhausen MT
and Poulsen HS: Cetuximab, bevacizumab, and irinotecan for patients
with primary glioblastoma and progression after radiation therapy
and temozolomide: A phase II trial. Neuro Oncol. 12:508–516.
2010.PubMed/NCBI
|
29
|
Prados M, Cloughesy T, Samant M, Fang L,
Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, et
al: Response as a predictor of survival in patients with recurrent
glioblastoma treated with bevacizumab. Neuro Oncol. 13:143–151.
2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang RY, Rahman R, Hamdan A, Kane C, Chen
C, Norden AD, Reardon DA, Mukundun S and Wen PY: Recurrent
glioblastoma: Volumetric assessment and stratification of patient
survival with early posttreatment magnetic resonance imaging in
patients treated with bevacizumab. Cancer. 119:3479–3488. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Henson JW, Ulmer S and Harris GJ: Brain
tumor imaging in clinical trials. AJNR Am J Neuroradiol.
29:419–424. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schmainda KM, Prah M, Connelly J, Rand SD,
Hoffman RG, Mueller W and Malkin MG: Dynamic-susceptibility
contrast agent MRI measures of relative cerebral blood volume
predict response to bevacizumab in recurrent high-grade glioma.
Neuro Oncol. 16:880–888. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ellingson BM, Kim HJ, Woodworth DC, Pope
WB, Cloughesy JN, Harris RJ, Lai A, Nghiemphu PL and Cloughesy TF:
Recurrent glioblastoma treated with bevacizumab: Contrast-enhanced
T1-weighted subtraction maps improve tumor delineation and aid
prediction of survival in a multicenter clinical trial. Radiology.
271:200–210. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dunet V, Rossier C, Buck A, Stupp R and
Prior JO: Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET
for the differential diagnosis of primary brain tumor: A systematic
review and Metaanalysis. J Nucl Med. 53:207–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nihashi T, Dahabreh IJ and Terasawa T: PET
in the clinical management of glioma: Evidence map. AJR Am J
Roentgenol. 200:W654–W660. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hutterer M, Nowosielski M, Putzer D,
Jansen NL, Seiz M, Schocke M, McCoy M, Göbel G, la Fougère C,
Virgolini IJ, et al: [18F]-fluoro-ethyl-L-tyrosine PET: A valuable
diagnostic tool in neuro-oncology, but not all that glitters is
glioma. Neuro Oncol. 15:341–351. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Galldiks N, Rapp M, Stoffels G, Fink GR,
Shah NJ, Coenen HH, Sabel M and Langen KJ: Response assessment of
bevacizumab in patients with recurrent malignant glioma using
[18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl
Med Mol Imaging. 40:22–33. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Garcia SC, Moretti MB, Garay MV and Batlle
A: Delta-aminolevulinic acid transport through blood-brain barrier.
Gen Pharmacol. 31:579–582. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Terr L and Weiner LP: An autoradiographic
study of delta-aminolevulinic acid uptake by mouse brain. Exp
Neurol. 79:564–568. 1983. View Article : Google Scholar : PubMed/NCBI
|
40
|
McGillion FB, Thompson GG, Moore MR and
Goldberg A: The passage of delta-aminolaevulinic acid across the
blood-brain barrier of the rat: Effect of ethanol. Biochem
Pharmacol. 23:472–474. 1974. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ennis SR, Novotny A, Xiang J, Shakui P,
Masada T, Stummer W, Smith DE and Keep RF: Transport of
5-aminolevulinic acid between blood and brain. Brain Res.
959:226–234. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gibson SL, Havens JJ, Foster TH and Hilf
R: Time-dependent intracellular accumulation of
delta-aminolevulinic acid, induction of porphyrin synthesis and
subsequent phototoxicity. Photochem Photobiol. 65:416–421. 1997.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Stummer W, Reulen HJ, Novotny A, Stepp H
and Tonn JC: Fluorescence-guided resections of malignant gliomas-an
overview. Acta Neurochir Suppl. 88:9–12. 2003.PubMed/NCBI
|
44
|
Samkoe KS, GibbsStrauss SL, Yang HH,
Hekmatyar S Khan, Hoopes P Jack, O'Hara JA, Kauppinen RA and Pogue
BW: Protoporphyrin IX fluorescence contrast in invasive
glioblastomas is linearly correlated with Gd enhanced magnetic
resonance image contrast but has higher diagnostic accuracy. J
Biomed Opt. 16:0960082011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wachter D, Kallenberg K, Wrede A,
SchulzSchaeffer W, Behm T and Rohde V: Fluorescence-guided
operation in recurrent glioblastoma multiforme treated with
bevacizumab-fluorescence of the noncontrast enhancing tumor tissue?
J Neurol Surg A Cent Eur Neurosurg. 73:401–406. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Collaud S, Juzeniene A, Moan J and Lange
N: On the selectivity of 5-aminolevulinic acid-induced
protoporphyrin IX formation. Curr Med Chem Anticancer Agents.
4:301–316. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cho HR, Kim DH, Kim D, Doble P, Bishop D,
Hare D, Park CK, Moon WK, Han MH and Choi SH: Malignant glioma: MR
imaging by using 5-aminolevulinic acid in an animal model.
Radiology. 272:720–730. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chavhan GB, Babyn PS, Thomas B, Shroff MM
and Haacke EM: Principles, techniques, and applications of
T2*-based MR imaging and its special applications. Radiographics.
29:1433–1449. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sugiyama Y, Hagiya Y, Nakajima M, Ishizuka
M, Tanaka T and Ogura S: The heme precursor 5-aminolevulinic acid
disrupts the Warburg effect in tumor cells and induces
caspase-dependent apoptosis. Oncol Rep. 31:1282–1286.
2014.PubMed/NCBI
|
50
|
Desideri A, Caccuri AM, Polizio F, Bastoni
R and Federici G: Electron paramagnetic resonance identification of
a highly reactive thiol group in the proximity of the catalytic
site of human placenta glutathione transferase. J Biol Chem.
266:2063–2066. 1991.PubMed/NCBI
|
51
|
Hiwatashi A, Kinoshita T, Moritani T, Wang
HZ, Shrier DA, Numaguchi Y, Ekholm SE and Westesson PL:
Hypointensity on diffusion-weighted MRI of the brain related to T2
shortening and susceptibility effects. AJR Am J Roentgenol.
181:1705–1709. 2003. View Article : Google Scholar : PubMed/NCBI
|