Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma (Review)
- Authors:
- Sufang Yang
- Guohua Liu
-
Affiliations: Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical Collage, Shantou, Guangdong 515041, P.R. China - Published online on: January 2, 2017 https://doi.org/10.3892/ol.2017.5557
- Pages: 1041-1047
This article is mentioned in:
Abstract
He W, Zeng Q, Zheng Y, Chen M, Shen J, Qiu J, Chen M, Zou R, Liao Y, Li Q, et al: The role of clinically significant portal hypertension in hepatic resection for hepatocellular carcinoma patients: A propensity score matching analysis. BMC Cancer. 15:2632015. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Zan RY, Wang SY, Li XL, Wei ML, Guo WH, You X, Li J and Liao ZY: Radiofrequency ablation versus percutaneous ethanol injection for hepatocellular carcinoma: A meta-analysis of randomized controlled trials. World J Surg Oncol. 13:962015. View Article : Google Scholar : PubMed/NCBI | |
Baek YH, Kim KT, Lee SW, Jeong JS, Park BH, Nam KJ, Cho JH, Kim YH, Roh YH, Lee HS, et al: Efficacy of hepatic arterial infusion chemotherapy in advanced hepatocellular carcinoma. World J Gastroenterol. 18:3426–3434. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Chung SM, Choi BO and Kay CS: Hepatocellular carcinoma with portal vein tumor thrombosis: Improved treatment outcomes with external beam radiation therapy. Hepatol Res. 41:813–824. 2011. View Article : Google Scholar : PubMed/NCBI | |
Buscà R, Pouysségur J and Lenormand P: ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev Biol. 4:532016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Nie H, Zhao X, Qin Y and Gong X: Bicyclol induces cell cycle arrest and autophagy in HepG2 human hepatocellular carcinoma cells through the PI3K/AKT and Ras/Raf/MEK/ERK pathways. BMC Cancer. 16:7422016. View Article : Google Scholar : PubMed/NCBI | |
Asati V, Mahapatra DK and Bharti SK: PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem. 109:314–341. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Song IH, Noh R, Kang HY, Kim SB, Ko SY, Lee ES, Kim SH, Lee BS, Kim AN, et al: Clinical outcomes of patients with advanced hepatocellular carcinoma treated with sorafenib: A retrospective study of routine clinical practice in multi-institutions. BMC Cancer. 15:2362015. View Article : Google Scholar : PubMed/NCBI | |
Yu P, Ye L, Wang H, Du G, Zhang J, Zhang J and Tian J: NSK-01105 inhibits proliferation and induces apoptosis of prostate cancer cells by blocking the Raf/MEK/ERK and PI3K/Akt/mTOR signal pathways. Tumour Biol. 36:2143–2153. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Toh HC, Thng CH, Chow P, Ong HS, Chung A, et al: AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol. 52:79–87. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Lui VW and Yeo W: Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 7:1149–1167. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Wen F, Cao J, Li P, She J and Chu Z: Genome-wide exploration of the molecular evolution and regulatory network of mitogen-activated protein kinase cascades upon multiple stresses in Brachypodium distachyon. BMC Genomics. 16:2282015. View Article : Google Scholar : PubMed/NCBI | |
Ward AF, Braun BS and Shannon KM: Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 120:3397–3406. 2012. View Article : Google Scholar : PubMed/NCBI | |
Knight T and Irving JA: Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol. 4:1602014. View Article : Google Scholar : PubMed/NCBI | |
Chang YS, Liu JC, Fu HQ, Yu BT, Zou SB, Wu QC and Wan L: Roles of targeting Ras/Raf/MEK/ERK signaling pathways in the treatment of esophageal carcinoma. Yao Xue Xue Bao. 48:635–641. 2013.(In Chinese). PubMed/NCBI | |
Zebisch A and Troppmair J: Back to the roots: The remarkable RAF oncogene story. Cell Mol Life Sci. 63:1314–1330. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moodie SA and Wolfman A: The 3Rs of life: Ras, Raf and growth regulation. Trends Genet. 10:44–48. 1994. View Article : Google Scholar : PubMed/NCBI | |
De Luca A, Maiello MR, D'Alessio A, Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signaling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 16:(Suppl 2). S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Bäsecke J, Stivala F, Donia M, Fagone P, Nicoletti F, et al: Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 25:1080–1094. 2011. View Article : Google Scholar : PubMed/NCBI | |
Trujillo JI: MEK inhibitors: A patent review 2008–2010. Expert Opin Ther Pat. 21:1045–1069. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chung E and Kondo M: Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res. 49:248–268. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J, et al: Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology. 27:951–958. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann K, Shibo L, Xiao Z, Longerich T, Büchler MW and Schemmer P: Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res. 31:3883–3890. 2011.PubMed/NCBI | |
Zuo Q, Huang H, Shi M, Zhang F, Sun J, Bin J, Liao Y and Liao W: Multivariate analysis of several molecular markers and clinicopathological features in postoperative prognosis of hepatocellular carcinoma. Anat Rec (Hoboken). 295:423–431. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gollob JA, Wilhelm S, Carter C and Kelley SL: Role of Raf kinase in cancer: Therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 33:392–406. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Qin L, Wang X, Zhou G, Liao Y, Weng Y, Jiang X, Lin Z, Liu K and Ye S: Alterations of oncogenes, tumor suppressor genes and growth factors in hepatocellular carcinoma: With relation to tumor size and invasiveness. Chin Med J (Engl). 111:313–318. 1998.PubMed/NCBI | |
Wiedmann MW and Mössner J: Molecular targeted therapy of hepatocellular carcinoma-results of the first clinical studies. Curr Cancer Drug Targets. 11:714–733. 2011. View Article : Google Scholar : PubMed/NCBI | |
Poon RT, Ho JW, Tong CS, Lau C, Ng IO and Fan ST: Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg. 91:1354–1360. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dhar DK, Naora H, Yamanoi A, Ono T, Kohno H, Otani H and Nagasue N: Requisite role of VEGF receptors in angiogenesis of hepatocellular carcinoma: A comparison with angiopoietin/Tie pathway. Anticancer Res. 22:379–386. 2002.PubMed/NCBI | |
Tavian D, De Petro G, Benetti A, Portolani N, Giulini SM and Barlati S: u-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int J Cancer. 87:644–649. 2000. View Article : Google Scholar : PubMed/NCBI | |
Whittaker S, Marais R and Zhu AX: The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 29:4989–5005. 2010. View Article : Google Scholar : PubMed/NCBI | |
Giambartolomei S, Covone F, Levrero M and Balsano C: Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene. 20:2606–2610. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang XW: Microinjection technique used to study functional interaction between p53 and hepatitis B virus X gene in apoptosis. Mol Biotechnol. 18:169–177. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nakamura H, Aoki H, Hino O and Moriyama M: HCV core protein promotes heparin binding EGF-like growth factor expression and activates Akt. Hepatol Res. 41:455–462. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schmitz KJ, Wohlschlaeger J, Lang H, Sotiropoulos GC, Malago M, Steveling K, Reis H, Cicinnati VR, Schmid KW and Baba HA: Activation of the ERK and AKT signaling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol. 48:83–90. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y and Hino O: Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology. 32:958–961. 2000. View Article : Google Scholar : PubMed/NCBI | |
Colombino M, Sperlongano P, Izzo F, Tatangelo F, Botti G, Lombardi A, Accardo M, Tarantino L, Sordelli I, Agresti M, et al: BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death Dis. 3:e2592012. View Article : Google Scholar : PubMed/NCBI | |
Kalinina O, Marchio A, Urbanskii AI, Tarkova AB, Rebbani K, Granov DA, Dejean A, Generalov MI and Pineau P: Somatic changes in primary liver cancer in Russia: A pilot study. Mutat Res. 755:90–99. 2013. View Article : Google Scholar : PubMed/NCBI | |
Challen C, Guo K, Collier JD, Cavanagh D and Bassendine MF: Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J Hepatol. 14:342–346. 1992. View Article : Google Scholar : PubMed/NCBI | |
Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE and Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev. 39:935–946. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taketomi A, Shirabe K, Muto J, Yoshiya S, Motomura T, Mano Y, Ikegami T, Yoshizumi T, Sugio K and Maehara Y: A rare point mutation in the Ras oncogene in hepatocellular carcinoma. Surg Today. 43:289–292. 2013. View Article : Google Scholar : PubMed/NCBI | |
Marom M, Haklai R, Ben-Baruch G, Marciano D, Egozi Y and Kloog Y: Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J Biol Chem. 270:22263–22270. 1995. View Article : Google Scholar : PubMed/NCBI | |
Haklai R, Weisz MG, Elad G, Paz A, Marciano D, Egozi Y, Ben-Baruch G and Kloog Y: Dislodgment and accelerated degradation of Ras. Biochemistry. 37:1306–1314. 1998. View Article : Google Scholar : PubMed/NCBI | |
McMahon LP, Yue W, Santen RJ and Lawrence JC Jr: Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. Mol Endocrinol. 19:175–183. 2005. View Article : Google Scholar : PubMed/NCBI | |
Blum R, Elkon R, Yaari S, Zundelevich A, Jacob-Hirsch J, Rechavi G, Shamir R and Kloog Y: Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid). Cancer Res. 67:3320–3328. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsimberidou AM, Rudek MA, Hong D, Ng CS, Blair J, Goldsweig H and Kurzrock R: Phase 1 first-in-human clinical study of S-trans, trans-farnesylthiosalicylic acid (salirasib) in patients with solid tumors. Cancer Chemother Pharmacol. 65:235–241. 2010. View Article : Google Scholar : PubMed/NCBI | |
Charette N, De Saeger C, Lannoy V, Horsmans Y, Leclercq I and Stärkel P: Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. Mol Cancer. 9:2562010. View Article : Google Scholar : PubMed/NCBI | |
da Silva Morais A, Saliez A, Leclercq I, Horsmans Y and Stärkel P: Inhibition of the Ras oncoprotein reduces proliferation of hepatocytes in vitro and in vivo in rats. Clin Sci (Lond). 114:73–83. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schneider-Merck T, Borbath I, Charette N, De Saeger C, Abarca J, Leclercq I, Horsmans Y and Stärkel P: The Ras inhibitor farnesylthiosalicyclic acid (FTS) prevents nodule formation and development of preneoplastic foci of altered hepatocytes in rats. Eur J Cancer. 45:2050–2060. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wecksler AT, Hwang SH, Liu JY, Wettersten HI, Morisseau C, Wu J, Weiss RH and Hammock BD: Biological evaluation of a novel sorafenib analogue, t-CUPM. Cancer Chemother Pharmacol. 75:161–171. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fucile C, Marenco S, Bazzica M, Zuccoli ML, Lantieri F, Robbiano L, Marini V, Di Gion P, Pieri G, Stura P, et al: Measurement of sorafenib plasma concentration by high-performance liquid chromatography in patients with advanced hepatocellular carcinoma: Is it useful the application in clinical practice? A pilot study. Med Oncol. 32:3352015. View Article : Google Scholar : PubMed/NCBI | |
Guan YS and He Q: Sorafenib: Activity and clinical application in patients with hepatocellular carcinoma. Expert Opin Pharmacother. 12:303–313. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arrondeau J, Mir O, Boudou-Rouquette P, Coriat R, Ropert S, Dumas G, Rodrigues MJ, Rousseau B, Blanchet B and Goldwasser F: Sorafenib exposure decreases over time in patients with hepatocellular carcinoma. Invest New Drugs. 30:2046–2049. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Zhao Y, Xu F, Jia C, Xu Y and Dai C: An updated meta-analysis of randomized controlled trials assessing the effect of sorafenib in advanced hepatocellular carcinoma. PLoS One. 9:e1125302014. View Article : Google Scholar : PubMed/NCBI | |
Sathornsumetee S, Hjelmeland AB, Keir ST, McLendon RE, Batt D, Ramsey T, Yusuff N, Rasheed BK, Kieran MW, Laforme A, et al: AAL881, a novel small molecule inhibitor of RAF and vascular endothelial growth factor receptor activities, blocks the growth of malignant glioma. Cancer Res. 66:8722–8730. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lang SA, Schachtschneider P, Moser C, Mori A, Hackl C, Gaumann A, Batt D, Schlitt HJ, Geissler EK and Stoeltzing O: Dual targeting of Raf and VEGF receptor 2 reduces growth and metastasis of pancreatic cancer through direct effects on tumor cells, endothelial cells, and pericytes. Mol Cancer Ther. 7:3509–3518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lang SA, Brecht I, Moser C, Obed A, Batt D, Schlitt HJ, Geissler EK and Stoeltzing O: Dual inhibition of Raf and VEGFR2 reduces growth and vascularization of hepatocellular carcinoma in an experimental model. Langenbecks Arch Surg. 393:333–341. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cotrim CZ, Amado FL and Helguero LA: Estrogenic effect of the MEK1 inhibitor PD98059 on endogenous estrogen receptor alpha and beta. J Steroid Biochem Mol Biol. 124:25–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Xu G, Zhang J, Yan M, Li X, Ma B, Jun L, Wang SJ and Tan J: Leptin induces osteocalcin expression in ATDC5 cells through activation of the MAPK-ERK1/2 signaling pathway. Oncotarget. Aug 24–2016.(Epub ahead of print). | |
Davis JE, Xie X, Guo J, Huang W, Chu WM, Huang S, Teng Y and Wu G: ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling. Oncotarget. 7:39834–39845. 2016.PubMed/NCBI | |
Montagut C and Settleman J: Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett. 283:125–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, LePage S, Leopold WR, et al: The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 18:6501–6504. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, Reid J, Mitchell DY, Hanson L, DeLuca P, Bruzek L, Piens J, et al: Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol. 23:5281–5293. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury P, Kaldjian EP, et al: Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 22:4456–4462. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ciuffreda L, Del Bufalo D, Desideri M, Di Sanza C, Stoppacciaro A, Ricciardi MR, Chiaretti S, Tavolaro S, Benassi B, Bellacosa A, et al: Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations. Neoplasia. 11:720–731. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lorusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L, Chapman PB, DePrimo SE, Bentivegna S, Wilner KD, Tan W and Ricart AD: Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 16:1924–1937. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haura EB, Ricart AD, Larson TG, Stella PJ, Bazhenova L, Miller VA, Cohen RB, Eisenberg PD, Selaru P, Wilner KD and Gadgeel SM: A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 16:2450–2457. 2010. View Article : Google Scholar : PubMed/NCBI | |
Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S and Smith PD: AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: Mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther. 6:2209–2219. 2007. View Article : Google Scholar : PubMed/NCBI | |
Do K, Speranza G, Bishop R, Khin S, Rubinstein L, Kinders RJ, Datiles M, Eugeni M, Lam MH, Doyle LA, et al: Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs. 33:720–728. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grasso S, Pereira GJ, Palmeira-Dos-Santos C, Calgarotto AK, Martínez-Lacaci I, Ferragut JA, Smaili SS and Bincoletto C: Autophagy regulates Selumetinib (AZD6244) induced-apoptosis in colorectal cancer cells. Eur J Med Chem. 122:611–618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang QJ, Huo Y, Han YL, Wan LL, Li J, Huang JL, Lu J, Chen PG, Gan R and Guo C. Cheng: Selumetinib attenuate skeletal muscle wasting in murine cachexia model through ERK inhibition and AKT activation. Mol Cancer Ther. Sep 6–2016.(Epub ahead of print). | |
O'Neil BH, Goff LW, Kauh JS, Strosberg JR, Bekaii-Saab TS, Lee RM, Kazi A, Moore DT, Learoyd M, Lush RM, et al: Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 29:2350–2356. 2011. View Article : Google Scholar : PubMed/NCBI | |
Holkova B, Zingone A, Kmieciak M, Bose P, Badros AZ, Voorhees PM, Baz R, Korde N, Lin HY, Chen JQ, et al: Phase II trial of AZD6244 (Selumetinib, ARRY-142886), an oral MEK1/2 inhibitor, in relapsed/refractory multiple myeloma. Clin Cancer Res. 22:1067–1075. 2016. View Article : Google Scholar : PubMed/NCBI | |
Coleman RL, Sill MW, Thaker PH, Bender DP, Street D, McGuire WP, Johnston CM and Rotmensch J: A phase II evaluation of selumetinib (AZD6244, ARRY-142886), a selective MEK-1/2 inhibitor in the treatment of recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 138:30–35. 2015. View Article : Google Scholar : PubMed/NCBI | |
Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, LePage S, Leopold WR, et al: The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 18:6501–6504. 2008. View Article : Google Scholar : PubMed/NCBI |