1
|
Szákacs G, Paterson JK, Ludwig JA,
Booth-Genthe C and Gottesman MM: Targeting multidrug resistance in
cancer. Nat Rev Drug Discov. 5:219–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gottesman MM, Fojo T and Bates SE:
Multidrug resistance in cancer: Role of ATP-dependent transporters.
Nat Rev Cancer. 2:48–58. 2002. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Li K, Chen B, Xu L, Feng J, Xia G, Cheng
J, Wang J, Gao F and Wang X: Reversal of multidrug resistance by
cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung
cancer cells in vitro and in vivo. Int J Nanomedicine. 8:1867–1877.
2013.PubMed/NCBI
|
4
|
Kuss S, Polcari D, Geissler M, Brassard D
and Mauzeroll J: Assessment of multidrug resistance on cell
coculture patterns using scanning electrochemical microscopy. Proc
Natl Acad Sci USA. 110:9249–9254. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xu K, Liang X, Cui D, Wu Y, Shi W and Liu
J: miR-1915 inhibits Bcl-2 to modulate multidrug resistance by
increasing drug-sensitivity in human colorectal carcinoma cells.
Mol Carcinog. 52:70–78. 2013. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Baer C, Claus R and Plass C: Genome-wide
epigenetic regulation of miRNAs in cancer. Cancer Res. 73:473–477.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu K, Liang X, Shen K, Cui D, Zheng Y, Xu
J, Fan Z, Qiu Y, Li Q, Ni L and Liu J: miR-297 modulates multidrug
resistance in human colorectal carcinoma by down-regulating MRP-2.
Biochem J. 446:291–300. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
An Y, Zhang Z, Shang Y, Jiang X, Dong J,
Yu P, Nie Y and Zhao Q: miR-23b-23p regulates the chemoresistance
of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death
Dis. 6:e17662015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang Z, Yang J, Xu G, Wang W, Liu C, Yang
H, Yu Z, Lei Q, Xiao L, Xiong J, et al: Targeting miR-381-NEFL axis
sensitizes glioblastoma cells to temozolomide by regulating
stemness factors and multidrug resistance factors. Oncotarget.
6:3147–3164. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ottman R, Nguyen C, Lorch R and
Chakrabarti R: MicroRNA expressions associated with progression of
prostate cancer cells to antiandrogen therapy resistance. Mol
Cancer. 13:12014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Eisenhauer EA, Therasse P, Bogaerts J,
Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S,
Mooney M, et al: New response evaluation criteria in solid tumors:
Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247.
2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li J, Wang Y, Song Y, Fu Z and Yu W:
miR-27a regulates cisplatin resistance and metastasis by targeting
RKIP in human lung adenocarcinoma cells. Mol Cancer. 13:1932014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Li J, Wang Y, Luo J, Fu Z, Ying J, Yu Y
and Yu W: miR-134 inhibits epithelial to mesenchymal transition by
targeting FOXM1 n non-small cell lung cancer cells. FEBS Lett.
586:3721–3725. 2012. View Article : Google Scholar
|
15
|
Young LC, Campling BG, Cole SP, Deeley RG
and Gerlach JH: Multidrug resistance proteins MRP3, MRP1 and MRP2
in lung cancer: Correlation of protein levels with drug response
and messenger RNA levels. Clin Cancer Res. 7:1798–1804.
2001.PubMed/NCBI
|
16
|
Doubre H, Césari D, Mairovitz A, Bénac C,
Chantot-Bastaraud S, Dagnon K, Antoine M, Danel C, Bernaudin JF and
Fleury-Feith J: Multidrug resistance-associated protein (MRP1) is
overexpressed in DNA aneuploid carcinomatous cells in non-small
cell lung cancer (NSCLC). Int J Cancer. 113:568–574. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Li J, Li ZN, Du YJ, Li XQ, Bao QL and Chen
P: Expression of MRP1, BCRP, LRP and ERCC1 in advanced
non-small-cell lung cancer: Correlation with response to
chemotherapy and survival. Clin Lung Cancer. 10:414–421. 2009.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun CC, Li SJ and Li DJ: Hsa-miR-134
suppresses non-small cell lung cancer (NSCLC) development through
down-regulation of CCND1. Oncotarget. 7:35960–35978.
2016.PubMed/NCBI
|
19
|
Gao Y, Liu T and Huang Y: MicroRNA-134
suppresses endometrial cancer stem cells by targeting POGLUT1 and
Notch pathway proteins. FEBS Lett. 589:207–214. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang Y, Kim J, Mueller AC, Dey B, Yang Y,
Lee DH, Hachmann J, Finderle S, Park DM, Christensen J, et al:
Multiple receptor tyrosine kinases converge on microRNA-134 to
control KRAS, STAT5B and glioblastoma. Cell Death Diff. 21:720–734.
2014. View Article : Google Scholar
|
21
|
Wang Z, Ahmad A, Li Y, Banerjee S, Kong D
and Sarkar FH: Forkhead box M1 transcription factor: A novel target
for cancer therapy. Cancer Treat Rev. 36:151–156. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dai B, Kang SH, Gong W, Liu M, Aldape KD,
Sawaya R and Huang S: Aberrant FOXM1B expression increases matrix
metalloproteinase-2 transcription and enhances the invasion of
glioma cells. Oncogene. 26:6212–6219. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chiu WT, Huang YF, Tsai HY, Chen CC, Chang
CH, Huang SC, Hsu KF and Chou CY: FOXM1 confers to
epithelial-mesenchymal transition, stemness and chemoresistance in
epithelial ovarian carcinoma cells. Oncotarget. 6:2349–2365. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tan Y, Raychaudhuri P and Costa RH: Chk2
mediates stabilization of the FoxM1 transcription factor to
stimulate expression of DNA repair genes. Mol Cell Biol.
27:1007–1016. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kwok JM, Peck B, Monteiro LJ, Schwenen HD,
Millour J, Coombes RC, Myatt SS and Lam EW: FOXM1 confers acquired
cisplatin resistance in breast cancer cells. Mol Cancer Res.
8:24–34. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hodge G, Holmes M, Jersmann H, Jersmann H,
Reynolds PN and Hodge S: The drug efflux pump Pgp1 in
pro-inflammatory lymphocytes is a target for novel treatment
strategies in COPD. Respir Res. 14:632013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lu JF, Pokharel D and Bebawy M: MRP1 and
its role in anticancer drug resistance. Drug Metab Rev. 47:406–419.
2015. View Article : Google Scholar : PubMed/NCBI
|