Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy (Review)
- Authors:
- Wanyeon Kim
- Jihoon Kang
- Sungmin Lee
- Buhyun Youn
-
Affiliations: Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea, Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea - Published online on: April 18, 2017 https://doi.org/10.3892/ol.2017.6042
- Pages: 4593-4601
This article is mentioned in:
Abstract
Ahmad SS, Duke S, Jena R, Williams MV and Burnet NG: Advances in radiotherapy. BMJ. 345:e77652012. View Article : Google Scholar : PubMed/NCBI | |
Schaue D and McBride WH: Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 12:527–540. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baskar R, Lee KA, Yeo R and Yeoh KW: Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
Copp RR, Peebles DD, Soref CM and Fahl WE: Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int J Radiat Biol. 89:485–492. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y and Youn B: PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res. 70:90–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kang J, Kim E, Kim W, Seong KM, Youn H, Kim JW, Kim J and Youn B: Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem. 288:27343–27357. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trotti A, Bellm LA, Epstein JB, Frame D, Fuchs HJ, Gwede CK, Komaroff E, Nalysnyk L and Zilberberg MD: Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: A systematic literature review. Radiother Oncol. 66:253–262. 2003. View Article : Google Scholar : PubMed/NCBI | |
Furby A, Behin A, Lefaucheur JP, Beauvais K, Marcorelles P, Mussini JM, Bassez G, Créange A, Eymard B and Pénisson-Besnier I: Late-onset cervicoscapular muscle atrophy and weakness after radiotherapy for Hodgkin disease: A case series. J Neurol Neurosurg Psychiatry. 81:101–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
Radvansky LJ, Pace MB and Siddiqui A: Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia. Am J Health Syst Pharm. 70:1025–1032. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Okunieff P: Radiation and third-generation chemotherapy. Hematol Oncol Clin North Am. 18:55–80. 2004. View Article : Google Scholar : PubMed/NCBI | |
Prouillac C, Vicendo P, Garrigues JC, Poteau R and Rima G: Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: Free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radic Biol Med. 46:1139–1148. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Seong KM and Youn B: Phenylpropanoids in radioregulation: Double edged sword. Exp Mol Med. 43:323–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang HJ, Youn H, Seong KM, Yun YJ, Kim W, Kim YH, Lee JY, Kim CS, Jin YW and Youn B: Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation. Biochem Pharmacol. 82:524–534. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A, Eschwege F, Zhang J, Russell L, Oster W and Sauer R: Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol. 18:3339–3345. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hensley ML, Schuchter LM, Lindley C, Meropol NJ, Cohen GI, Broder G, Gradishar WJ, Green DM, Langdon RJ Jr, Mitchell RB, et al: American society of clinical oncology clinical practice guidelines for the use of chemotherapy and radiotherapy protectants. J Clin Oncol. 17:3333–3355. 1999. View Article : Google Scholar : PubMed/NCBI | |
Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, Prasad J, Singh S, Samanta N and Sharma RK: Radioprotection by plant products: Present status and future prospects. Phytother Res. 19:1–22. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weiss JF and Landauer MR: Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology. 189:1–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jagetia GC: Radioprotective potential of plants and herbs against the effects of ionizing radiation. J Clin Biochem Nutr. 40:74–81. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sagar SM: Can the therapeutic gain of radiotherapy be increased by concurrent administration of Asian botanicals? Integr Cancer Ther. 9:5–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kma L: Plant extracts and plant-derived compounds: Promising players in a countermeasure strategy against radiological exposure. Asian Pac J Cancer Prev. 15:2405–2425. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nambiar D, Rajamani P and Singh RP: Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res. 728:139–157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bourgier C, Levy A, Vozenin MC and Deutsch E: Pharmacological strategies to spare normal tissues from radiation damage: Useless or overlooked therapeutics? Cancer Metastasis Rev. 31:699–712. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maurya DK, Devasagayam TP and Nair CK: Some novel approaches for radioprotection and the beneficial effect of natural products. Indian J Exp Biol. 44:93–114. 2006.PubMed/NCBI | |
Kuntic VS, Stanković MB, Vujic ZB, Brborić JS and Uskoković-Marković SM: Radioprotectors-the evergreen topic. Chem Biodivers. 10:1791–1803. 2013. View Article : Google Scholar : PubMed/NCBI | |
Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S and Dent P: Radiation-induced cell signaling: Inside-out and outside-in. Mol Cancer Ther. 6:789–801. 2007. View Article : Google Scholar : PubMed/NCBI | |
Multhoff G and Radons J: Radiation, inflammation, and immune responses in cancer. Front Oncol. 2:582012. View Article : Google Scholar : PubMed/NCBI | |
Verheij M: Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev. 27:471–480. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fogg VC, Lanning NJ and Mackeigan JP: Mitochondria in cancer: At the crossroads of life and death. Chin J Cancer. 30:526–539. 2011. View Article : Google Scholar : PubMed/NCBI | |
Robbins ME and Zhao W: Chronic oxidative stress and radiation-induced late normal tissue injury: A review. Int J Radiat Biol. 80:251–259. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paun A, Kunwar A and Haston CK: Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice. Radiat Oncol. 10:452015. View Article : Google Scholar : PubMed/NCBI | |
Giridhar P, Mallick S, Rath GK and Julka PK: Radiation induced lung injury: Prediction, assessment and management. Asian Pac J Cancer Prev. 16:2613–2617. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim HU, Ryu JY, Lee JO and Lee SY: A systems approach to traditional oriental medicine. Nat Biotechnol. 33:264–268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheung F: TCM: Made in China. Nature. 480:S82–S83. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kumar H, Song SY, More SV, Kang SM, Kim BW, Kim IS and Choi DK: Traditional Korean East Asian medicines and herbal formulations for cognitive impairment. Molecules. 18:14670–14693. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Z: Modernization: One step at a time. Nature. 480:S90–S92. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schmidt BM, Ribnicky DM, Lipsky PE and Raskin I: Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol. 3:360–366. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barabasi AL, Gulbahce N and Loscalzo J: Network medicine: A network-based approach to human disease. Nat Rev Genet. 12:56–68. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Li XQ, Wang X, Li T, Chen X, Liu SB and Mei QB: Characterizations and anti-tumor activities of three acidic polysaccharides from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol. 46:115–122. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhao Y, Zhou Y, Lv Y, Mao J and Zhao P: Component and antioxidant properties of polysaccharide fractions isolated from Angelica sinensis (OLIV.) DIELS. Biol Pharm Bull. 30:1884–1890. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Duan JA, Qian D, Guo J, Song B and Yang M: Assessment and comparison of immunoregulatory activity of four hydrosoluble fractions of Angelica sinensis in vitro on the peritoneal macrophages in ICR mice. Int Immunopharmacol. 10:422–430. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xie CH, Zhang MS, Zhou YF, Han G, Cao Z, Zhou FX, Zhang G, Luo ZG, Wu JP, Liu H, et al: Chinese medicine Angelica sinensis suppresses radiation-induced expression of TNF-alpha and TGF-beta1 in mice. Oncol Rep. 15:1429–1436. 2006.PubMed/NCBI | |
Han G, Zhou YF, Zhang MS, Cao Z, Xie CH, Zhou FX, Peng M and Zhang WJ: Angelica sinensis down-regulates hydroxyproline and Tgfb1 and provides protection in mice with radiation-induced pulmonary fibrosis. Radiat Res. 165:546–552. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Wang Y, Shen HL, Shen XD, Nie Y, Wang Y, Han T, Yin M and Zhang QY: Structural characterization and radioprotection of bone marrow hematopoiesis of two novel polysaccharides from the root of Angelica sinensis (Oliv.) Diels. Fitoterapia. 83:1712–1720. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee JG, Hsieh WT, Chen SU and Chiang BH: Hematopoietic and myeloprotective activities of an acidic Angelica sinensis polysaccharide on human CD34+ stem cells. J Ethnopharmacol. 139:739–745. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Li J, Meng FY, Liang SX, Deng R, Li CK, Pong NH, Lau CP, Cheng SW, Ye JY, et al: Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway. BMC Complement Altern Med. 10:792010. View Article : Google Scholar : PubMed/NCBI | |
Chen XP, Li W, Xiao XF, Zhang LL and Liu CX: Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med. 11:577–587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN and Aggarwal BB: Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 76:1590–1611. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hatcher H, Planalp R, Cho J, Torti FM and Torti SV: Curcumin: From ancient medicine to current clinical trials. Cell Mol Life Sci. 65:1631–1652. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nemavarkar P, Chourasia BK and Pasupathy K: Evaluation of radioprotective action of compounds using Saccharomyces cerevisiae. J Environ Pathol Toxicol Oncol. 23:145–151. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pal A and Pal AK: Radioprotection of turmeric extracts in bacterial system. Acta Biol Hung. 56:333–343. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jagetia GC: Radioprotection and radiosensitization by curcumin. Adv Exp Med Biol. 595:301–320. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nada AS, Hawas AM, Nel D Amin, Elnashar MM and Abd Elmageed ZY: Radioprotective effect of Curcuma longa extract on gamma-irradiation-induced oxidative stress in rats. Can J Physiol Pharmacol. 90:415–423. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aravindan N, Madhusoodhanan R, Ahmad S, Johnson D and Herman TS: Curcumin inhibits NFkappaB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells. Cancer Biol Ther. 7:569–576. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Ma J, Guo X, Sun J, Yu Y, Cao B, Zhang L, Ding X, Huang J and Shao JF: Curcumin enhances the radiosensitivity of U87 cells by inducing DUSP-2 up-regulation. Cell Physiol Biochem. 35:1381–1393. 2015. View Article : Google Scholar : PubMed/NCBI | |
Goel A and Aggarwal BB: Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer. 62:919–930. 2010. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan M, Prasad N Rajendra and Menon VP: Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat Res. 611:96–103. 2006. View Article : Google Scholar : PubMed/NCBI | |
Inano H and Onoda M: Radioprotective action of curcumin extracted from Curcuma longa LINN: Inhibitory effect on formation of urinary 8-hydroxy-2′-deoxyguanosine, tumorigenesis, but not mortality, induced by gamma-ray irradiation. Int J Radiat Oncol Biol Phys. 53:735–743. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Kinniry PA, Arguiri E, Serota M, Kanterakis S, Chatterjee S, Solomides CC, Javvadi P, Koumenis C, Cengel KA and Christofidou-Solomidou M: Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice. Radiat Res. 173:590–601. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jelveh S, Kaspler P, Bhogal N, Mahmood J, Lindsay PE, Okunieff P, Doctrow SR, Bristow RG and Hill RP: Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin. Int J Radiat Biol. 89:618–627. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chan PC, Xia Q and Fu PP: Ginkgo biloba leave extract: Biological, medicinal, and toxicological effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 25:211–244. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jacobs BP and Browner WS: Ginkgo biloba: A living fossil. Am J Med. 108:341–342. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yirmibesoglu E, Karahacioglu E, Kilic D, Lortlar N, Akbulut G and Omeroglu S: The protective effects of Ginkgo biloba extract (EGb-761) on radiation-induced dermatitis: An experimental study. Clin Exp Dermatol. 37:387–394. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sener G, Kabasakal L, Atasoy BM, Erzik C, Velioğlu-Oğünç A, Cetinel S, Gedik N and Yeğen BC: Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats. Pharmacol Res. 53:241–252. 2006. View Article : Google Scholar : PubMed/NCBI | |
Attia A, Rapp SR, Case LD, D'Agostino R, Lesser G, Naughton M, McMullen K, Rosdhal R and Shaw EG: Phase II study of Ginkgo biloba in irradiated brain tumor patients: Effect on cognitive function, quality of life, and mood. J Neurooncol. 109:357–363. 2012. View Article : Google Scholar : PubMed/NCBI | |
Suleyman H, Gumustekin K, Taysi S, Keles S, Oztasan N, Aktas O, Altinkaynak K, Timur H, Akcay F, Akar S, et al: Beneficial effects of Hippophae rhamnoides L. on nicotine induced oxidative stress in rat blood compared with vitamin E. Biol Pharm Bull. 25:1133–1136. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Kondo K, Suzuki Y, Ikeda Y, Meng X and Umemura K: Inhibitory effects of total flavones of Hippophae rhamnoides L on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sci. 72:2263–2271. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zeb A: Important therapeutic uses of sea buckthorn (Hippophae): A Review. J Biol Sci. 4:687–693. 2004. View Article : Google Scholar | |
Goel HC, Prasad J, Singh S, Sagar RK, Kumar IP and Sinha AK: Radioprotection by a herbal preparation of Hippophae rhamnoides, RH-3, against whole body lethal irradiation in mice. Phytomedicine. 9:15–25. 2002. View Article : Google Scholar : PubMed/NCBI | |
Agrawala PK and Adhikari JS: Modulation of radiation-induced cytotoxicity in U 87 cells by RH-3 (a preparation of Hippophae rhamnoides). Indian J Med Res. 130:542–549. 2009.PubMed/NCBI | |
Gupta V, Bala M, Prasad J, Singh S and Gupta M: Leaves of Hippophae rhamnoides prevent taste aversion in gamma-irradiated rats. J Diet Suppl. 8:355–368. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shukla SK, Chaudhary P, Kumar IP, Samanta N, Afrin F, Gupta ML, Sharma UK, Sinha AK, Sharma YK and Sharma RK: Protection from radiation-induced mitochondrial and genomic DNA damage by an extract of Hippophae rhamnoides. Environ Mol Mutagen. 47:647–656. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sureshbabu AV, Barik TK, Namita I and Kumar I Prem: Radioprotective properties of Hippophae rhamnoides (sea buckthorn) extract in vitro. Int J Health Sci (Qassim). 2:45–62. 2008.PubMed/NCBI | |
Goel HC, Kumar IP, Samanta N and Rana SV: Induction of DNA-protein cross-links by Hippophae rhamnoides: Implications in radioprotection and cytotoxicity. Mol Cell Biochem. 245:57–67. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kumar IP, Namita S and Goel HC: Modulation of chromatin organization by RH-3, a preparation of Hippophae rhamnoides, a possible role in radioprotection. Mol Cell Biochem. 238:1–9. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rai MK: In vitro evaluation of medicinal plant extracts against Pestalotiopsis mangiferae. Hindustan Antibiot Bull. 38:53–56. 1996.PubMed/NCBI | |
Gupta SK, Prakash J and Srivastava S: Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. Indian J Exp Biol. 40:765–773. 2002.PubMed/NCBI | |
Singh S, Majumdar DK and Rehan HM: Evaluation of anti-inflammatory potential of fixed oil of Ocimum sanctum (Holybasil) and its possible mechanism of action. J Ethnopharmacol. 54:19–26. 1996. View Article : Google Scholar : PubMed/NCBI | |
Devi PU: Radioprotective, anticarcinogenic and antioxidant properties of the Indian holy basil, Ocimum sanctum (Tulasi). Indian J Exp Biol. 39:185–190. 2001.PubMed/NCBI | |
Uma Devi P and Ganasoundari A: Radioprotective effect of leaf extract of Indian medicinal plant Ocimum sanctum. Indian J Exp Biol. 33:205–208. 1995.PubMed/NCBI | |
Monga J, Sharma M, Tailor N and Ganesh N: Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C(57)BL mice. Pharm Biol. 49:428–436. 2011. View Article : Google Scholar : PubMed/NCBI | |
Subramanian M, Chintalwar GJ and Chattopadhyay S: Antioxidant and radioprotective properties of an Ocimum sanctum polysaccharide. Redox Rep. 10:257–264. 2005. View Article : Google Scholar : PubMed/NCBI | |
Uma Devi P, Ganasoundari A, Rao BS and Srinivasan KK: In vivo radioprotection by ocimum flavonoids: Survival of mice. Radiat Res. 151:74–78. 1999. View Article : Google Scholar : PubMed/NCBI | |
Uma Devi P, Ganasoundari A, Vrinda B, Srinivasan KK and Unnikrishnan MK: Radiation protection by the ocimum flavonoids orientin and vicenin: Mechanisms of action. Radiat Res. 154:455–460. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nayak V and Devi PU: Protection of mouse bone marrow against radiation-induced chromosome damage and stem cell death by the ocimum flavonoids orientin and vicenin. Radiat Res. 163:165–171. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shin JY, Song JY, Yun YS, Yang HO, Rhee DK and Pyo S: Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol Immunotoxicol. 24:469–482. 2002. View Article : Google Scholar : PubMed/NCBI | |
Konoshima T, Takasaki M and Tokuda H: Anti-carcinogenic activity of the roots of Panax notoginseng. II. Biol Pharm Bull. 22:1150–1152. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jung CH, Seog HM, Choi IW, Choi HD and Cho HY: Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol. 98:245–250. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Chung IS, Lee IR, Kim KH, Hong WS and Yun YS: Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res. 17:323–331. 1997.PubMed/NCBI | |
Wang W, Shen H, Xie JJ, Ling J and Lu H: Neuroprotective effect of ginseng against spinal cord injury induced oxidative stress and inflammatory responses. Int J Clin Exp Med. 8:3514–3521. 2015.PubMed/NCBI | |
Song JY, Han SK, Bae KG, Lim DS, Son SJ, Jung IS, Yi SY and Yun YS: Radioprotective effects of ginsan, an immunomodulator. Radiat Res. 159:768–774. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Kim MH, Byon YY, Park JW, Jee Y and Joo HG: Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J Vet Sci. 8:39–44. 2007. View Article : Google Scholar : PubMed/NCBI | |
Verma P, Jahan S, Kim TH and Goyal PK: Management of radiation injuries by panax ginseng extract. J Ginseng Res. 35:261–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bing SJ, Kim MJ, Ahn G, Im J, Kim DS, Ha D, Cho J, Kim A and Jee Y: Acidic polysaccharide of Panax ginseng regulates the mitochondria/caspase-dependent apoptotic pathway in radiation-induced damage to the jejunum in mice. Acta Histochem. 116:514–521. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koo HJ, Jang SA, Yang KH, Kang SC, Namkoong S, Kim TH, do TT Hang and Sohn EH: Effects of red ginseng on the regulation of cyclooxygenase-2 of spleen cells in whole-body gamma irradiated mice. Food Chem Toxicol. 62:839–846. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Son CH, Nah SY, Jo SK, Jang JS and Shin DH: Modification of radiation response in mice by Panax ginseng and diethyldithiocarbamate. In Vivo. 15:407–411. 2001.PubMed/NCBI | |
Verma P, Sharma P, Parmar J, Sharma P, Agrawal A and Goyal PK: Amelioration of radiation-induced hematological and biochemical alterations in Swiss albino mice by Panax ginseng extract. Integr Cancer Ther. 10:77–84. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arun R, Prakash MV, Abraham SK and Premkumar K: Role of Syzygium cumini seed extract in the chemoprevention of in vivo genomic damage and oxidative stress. J Ethnopharmacol. 134:329–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
Muruganandan S, Srinivasan K, Chandra S, Tandan SK, Lal J and Raviprakash V: Anti-inflammatory activity of Syzygium cumini bark. Fitoterapia. 72:369–375. 2001. View Article : Google Scholar : PubMed/NCBI | |
de Bona KS, Bellé LP, Sari MH, Thomé G, Schetinger MR, Morsch VM, Boligon A, Athayde ML, Pigatto AS and Moretto MB: Syzygium cumini extract decrease adenosine deaminase, 5′nucleotidase activities and oxidative damage in platelets of diabetic patients. Cell Physiol Biochem. 26:729–738. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jagetia GC, Baliga MS and Venkatesh P: Influence of seed extract of Syzygium Cumini (Jamun) on mice exposed to different doses of gamma-radiation. J Radiat Res. 46:59–65. 2005. View Article : Google Scholar : PubMed/NCBI | |
Srivastava S and Chandra D: Pharmacological potentials of Syzygium cumini: A review. J Sci Food Agric. 93:2084–2093. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jagetia GC and Baliga MS: Syzygium cumini (Jamun) reduces the radiation-induced DNA damage in the cultured human peripheral blood lymphocytes: A preliminary study. Toxicol Lett. 132:19–25. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jagetia GC and Baliga MS: Evaluation of the radioprotective effect of the leaf extract of Syzygium cumini (Jamun) in mice exposed to a lethal dose of gamma-irradiation. Nahrung. 47:181–185. 2003. View Article : Google Scholar : PubMed/NCBI | |
Baliga MS: Anticancer, chemopreventive and radioprotective potential of black plum (Eugenia jambolana lam.). Asian Pac J Cancer Prev. 12:3–15. 2011.PubMed/NCBI | |
Jagetia GC, Shetty PC and Vidyasagar MS: Treatment of mice with leaf extract of jamun (Syzygium cumini Linn. Skeels) protects against the radiation induced damage in the intestinal mucosa of mice exposed to different doses of gamma-radiation. Pharmacology online. 1:169–195. 2008. | |
Jagetia GC, Shetty PC and Vidyasagar MS: Inhibition of radiation-induced DNA damage by jamun, Syzygium cumini, in the cultured splenocytes of mice exposed to different doses of γ-radiation. Integr Cancer Ther. 11:141–153. 2012. View Article : Google Scholar : PubMed/NCBI | |
Penna SC, Medeiros MV, Aimbire FS, Faria-Neto HC, Sertié JA and Lopes-Martins RA: Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema. Phytomedicine. 10:381–385. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sharma SS and Gupta YK: Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J Ethnopharmacol. 62:49–55. 1998. View Article : Google Scholar : PubMed/NCBI | |
Young HY, Luo YL, Cheng HY, Hsieh WC, Liao JC and Peng WH: Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol. 96:207–210. 2005. View Article : Google Scholar : PubMed/NCBI | |
Habib SH, Makpol S, Hamid NA Abdul, Das S, Ngah WZ and Yusof YA: Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics (Sao Paulo). 63:807–813. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ernst E and Pittler MH: Efficacy of ginger for nausea and vomiting: A systematic review of randomized clinical trials. Br J Anaesth. 84:367–371. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lien HC, Sun WM, Chen YH, Kim H, Hasler W and Owyang C: Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am J Physiol Gastrointest Liver Physiol. 284:G481–G489. 2003. View Article : Google Scholar : PubMed/NCBI | |
Du X, Pan H, Zhang C, Zhang H, Liu H, Chen Z and Zeng X: Zingiber officinale extract modulates γ-rays-induced immunosuppression in mice. J Med Plants Res. 4:1647–1655. 2010. | |
Jagetia GC, Baliga MS, Venkatesh P and Ulloor JN: Influence of ginger rhizome (Zingiber officinale Rosc) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation. Radiat Res. 160:584–592. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jagetia GC, Baliga M and Venkatesh P: Ginger (Zingiber officinale Rosc.), a dietary supplement, protects mice against radiation-induced lethality: Mechanism of action. Cancer Biother Radiopharm. 19:422–435. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Haksar A, Chawla R, Kumar R, Arora R, Singh S, Prasad J, Islam F, Arora MP and Sharma R Kumar: Zingiber officinale Rosc. modulates gamma radiation-induced conditioned taste aversion. Pharmacol Biochem Behav. 81:864–870. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haksar A, Sharma A, Chawla R, Kumar R, Arora R, Singh S, Prasad J, Gupta M, Tripathi RP, Arora MP, et al: Zingiber officinale exhibits behavioral radioprotection against radiation-induced CTA in a gender-specific manner. Pharmacol Biochem Behav. 84:179–188. 2006. View Article : Google Scholar : PubMed/NCBI |