1
|
Vail DM and MacEwen EG: Spontaneously
occurring tumors of companion animals as models for human cancer.
Cancer Invest. 18:781–792. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sleeckx N, De Rooster H, Kroeze EJ
Veldhuis, Van Ginneken C and Van Brantegem L: Canine mammary
tumours, an overview. Reprod Domest Anim. 46:1112–1131. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Clarke MF, Dick JE, Dirks PB, Eaves CJ,
Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM: Cancer
Stem cells-perspectives on current status and future directions:
AACR workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Visvader JE and Lindeman GJ: Cancer stem
cells in solid tumours: Accumulating evidence and unresolved
questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hu Y and Fu L: Targeting cancer stem
cells: A new therapy to cure cancer patients. Am J Cancer Res.
2:340–356. 2012.PubMed/NCBI
|
6
|
Mitra A, Mishra L and Li S: EMT, CTCs and
CSCs in tumor relapse and drug-resistance. Oncotarget.
6:10697–11711. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Im KS, Jang YG, Shin JI, Kim NH, Lim HY,
Lee SM, Kim JH and Sur JH: CD44+/CD24- cancer stem cells are
associated with higher grade of canine mammary carcinomas. Vet
Pathol. 52:1041–1044. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Magalhães GM, Terra EM, de Oliveira
Vasconcelos R, de Barros Bandarra M, Moreira PR, Rosolem MC and
Alessi AC: Immunodetection of cells with a CD44+/CD24- phenotype in
canine mammary neoplasms. BMC Vet Res. 9:2052013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Michishita M, Akiyoshi R, Yoshimura H,
Katsumoto T, Ichikawa H, Ohkusu-Tsukada K, Nakagawa T, Sasaki N and
Takahashi K: Characterization of spheres derived from canine
mammary gland adenocarcinoma cell lines. Res Vet Sci. 91:254–260.
2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Leis O, Eguiara A, Lopez-Arribillaga E,
Alberdi MJ, Hernandez-Garcia S, Elorriaga K, Pandiella A, Rezola R
and Martin AG: Sox2 expression in breast tumours and activation in
breast cancer stem cells. Oncogene. 31:1354–1365. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Oliveira LR, Jeffrey SS and Ribeiro-Silva
A: Stem cells in human breast cancer. Histol Histopathol.
25:371–385. 2010.PubMed/NCBI
|
12
|
Michishita M, Akiyoshi R, Suemizu H,
Nakagawa T, Sasaki N, Takemitsu H, Arai T and Takahashi K: Aldehyde
dehydrogenase activity in cancer stem cells from canine mammary
carcinoma cell lines. Vet J. 193:508–513. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Naujokat C and Steinhart R: Salinomycin as
a drug for targeting human cancer stem cells. J Biomed Biotechnol.
2012:9506582012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Torres CG, Olivares A and Stoore C:
Simvastatin exhibits antiproliferative effects on spheres derived
from canine mammary carcinoma cells. Oncol Rep. 33:2235–2244.
2015.PubMed/NCBI
|
15
|
Pang LY, Cervantes-Arias A, Else RW and
Argyle DJ: Canine mammary cancer stem cells are radio- and chemo-
resistant and exhibit an epithelial-mesenchymal transition
phenotype. Cancers (Basel). 3:1744–1762. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhou S, Wang F, Wong ET, Fonkem E, Hsieh
TC, Wu JM and Wu E: Salinomycin: A novel anti-cancer agent with
known anti-coccidial activities. Curr Med Chem. 20:4095–4101. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kopp F, Hermawan A, Oak PS, Herrmann A,
Wagner E and Roidl A: Salinomycin treatment reduces metastatic
tumor burden by hampering cancer cell migration. Mol Cancer.
13:162014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lu D, Choi MY, Yu J, Castro JE, Kipps TJ
and Carson DA: Salinomycin inhibits Wnt signaling and selectively
induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl
Acad Sci USA. 108:pp. 13253–13257. 2011; View Article : Google Scholar : PubMed/NCBI
|
19
|
Lu W and Li Y: Salinomycin suppresses LRP6
expression and inhibits both Wnt/β-catenin and mTORC1 signaling in
breast and prostate cancer cells. J Cell Biochem. 115:1799–1807.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Uyama R, Nakagawa T, Hong SH, Mochizuki M,
Nishimura R and Sasaki N: Establishment of four pairs of canine
mammary tumour cell lines derived from primary and metastatic
origin and their E-cadherin expression. Vet Comp Oncol. 4:104–113.
2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dalerba P and Clarke MF: Cancer stem cells
and tumor metastasis: First steps into uncharted territory. Cell
Stem Cell. 1:241–242. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li F, Tiede B, Massagué J and Kang Y:
Beyond tumorigenesis: Cancer stem cells in metastasis. Cell Res.
17:3–14. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Grange C, Lanzardo S, Cavallo F, Camussi G
and Bussolati B: Sca-1 identifies the tumor-initiating cells in
mammary tumors of BALB-neuT transgenic mice. Neoplasia.
10:1433–1443. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Simmons MJ, Serra R, Hermance N and
Kelliher MA: NOTCH1 inhibition in vivo results in mammary tumor
regression and reduced mammary tumorsphere-forming activity in
vitro. Breast Cancer Res. 14:R1262012. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Ferletta M, Grawé J and Hellmén E: Canine
mammary tumors contain cancer stem-like cells and form spheroids
with an embryonic stem cell signature. Int J Dev Biol. 55:791–799.
2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang J, Zhang D, Xie F and Lin D: The
potential role of COX-2 in cancer stem cell-mediated canine mammary
tumor initiation: An immunohistochemical study. J Vet Sci.
16:225–231. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Curtin JC and Lorenzi MV: Drug discovery
approaches to target Wnt signaling in cancer stem cells.
Oncotarget. 1:552–566. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao Z, Lu P, Zhang H, Xu H, Gao N, Li M
and Liu C: Nestin positively regulates the Wnt/β-catenin pathway
and the proliferation, survival and invasiveness of breast cancer
stem cells. Breast Cancer Res. 16:4082014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tang QL, Zhao ZQ, Li JC, Liang Y, Yin JQ,
Zou CY, Xie XB, Zeng YX, Shen JN, Kang T and Wang J: Salinomycin
inhibits osteosarcoma by targeting its tumor stem cells. Cancer
Lett. 311:113–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mao J, Fan S, Ma W, Fan P, Wang B, Zhang
J, Wang H, Tang B, Zhang Q, Yu X, et al: Roles of Wnt/β-catenin
signaling in the gastric cancer stem cells proliferation and
salinomycin treatment. Cell Death Dis. 5:e10392014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang X, Lou Y, Zheng X, Wang H, Sun J,
Dong Q and Han B: Wnt blockers inhibit the proliferation of lung
cancer stem cells. Drug Des Devel Ther. 9:2399–2407.
2015.PubMed/NCBI
|
32
|
Wang F, He L, Dai WQ, Xu YP, Wu D, Lin CL,
Wu SM, Cheng P, Zhang Y, Shen M, et al: Salinomycin inhibits
proliferation and induces apoptosis of human hepatocellular
carcinoma cells in vitro and in vivo. PLoS One. 7:e506382012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Qu H, Ma B, Yuan HF, Wang ZY, Guo SJ and
Zhang J: Effect of salinomycin on metastasis and invasion of
bladder cancer cell line T24. Asian Pac J Trop Med. 8:578–582.
2015. View Article : Google Scholar : PubMed/NCBI
|