1
|
Pal SK, Hossain DM Sakib, Zhang Q, Frankel
PH, Jones JO, Carmichael C, Ruel C, Lau C and Kortylewski M:
Pazopanib as third-line therapy for metastatic renal cell
carcinoma: Clinical efficacy and temporal analysis of cytokine
profile. J Urol. 193:1114–1121. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mattei J, da Silva RD, Sehrt D, Molina WR
and Kim FJ: Targeted therapy in metastatic renal carcinoma. Cancer
Lett. 343:156–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Motzer RJ and Russo P: Systemic therapy
for renal cell carcinoma. J Urol. 163:408–417. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mulders P: Vascular endothelial growth
factor and mTOR pathways in renal cell carcinoma: Differences and
synergies of two targeted mechanisms. BJU Int. 104:1585–1589. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chow LQ and Eckhardt SG: Sunitinib: From
rational design to clinical efficacy. J Clin Oncol. 25:884–896.
2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Motzer RJ, Hutson TE, Tomczak P,
Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik
C, Kim ST, et al: Sunitinib versus interferon alfa in metastatic
renal-cell carcinoma. N Engl J Med. 356:115–124. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Domblides C, Gross-Goupil M, Quivy A and
Ravaud A: Emerging antiangiogenics for renal cancer. Expert Opin
Emerg Drugs. 18:495–511. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Motzer RJ, Hudes G, Wilding G, Schwartz
LH, Hariharan S, Kempin S, Fayyad R and Figlin RA: Phase I trial of
sunitinib malate plus interferon-alpha for patients with metastatic
renal cell carcinoma. Clin Genitourin Cancer. 7:28–33. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Patel PH, Senico PL, Curiel RE and Motzer
RJ: Phase I study combining treatment with temsirolimus and
sunitinib malate in patients with advanced renal cell carcinoma.
Clin Genitourin Cancer. 7:24–27. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mork CN, Faller DV and Spanjaard RA: A
mechanistic approach to anticancer therapy: Targeting the cell
cycle with histone deacetylase inhibitors. Curr Pharm Des.
11:1091–1104. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Witt O and Lindemann R: HDAC inhibitors:
Magic bullets, dirty drugs or just another targeted therapy. Cancer
Lett. 280:123–124. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Novogrodsky A, Dvir A, Ravid A, Shkolnik
T, Stenzel KH, Rubin AL and Zaizov R: Effect of polar organic
compounds on leukemic cells. Butyrate-induced partial remission of
acute myelogenous leukemia in a child. Cancer. 51:9–14. 1983.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Patnaik A, Rowinsky EK, Villalona MA,
Hammond LA, Britten CD, Siu LL, Goetz A, Felton SA, Burton S,
Valone FH and Eckhardt SG: A phase I study of pivaloyloxymethyl
butyrate, a prodrug of the differentiating agent butyric acid, in
patients with advanced solid malignancies. Clin Cancer Res.
8:2142–2148. 2002.PubMed/NCBI
|
14
|
Chen S and Sang N: Histone deacetylase
inhibitors: The epigenetic therapeutics that repress
hypoxia-inducible factors. J Biomed Biotechnol. 2011:1979462011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Jung JW, Cho SD, Ahn NS, Yang SR, Park JS,
Jo EH, Hwang JW, Jung JY, Kim SH, Kang KS and Lee YS: Ras/MAP
kinase pathways are involved in Ras specific apoptosis induced by
sodium butyrate. Cancer Lett. 225:199–206. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim SH, Kim KW and Jeong JW: Inhibition of
hypoxia-induced angiogenesis by sodium butyrate, a histone
deacetylase inhibitor, through hypoxia-inducible factor-1alpha
suppression. Oncol Rep. 17:793–797. 2007.PubMed/NCBI
|
17
|
Larionov A, Krause A and Miller W: A
standard curve based method for relative real time PCR data
processing. BMC Bioinformatics. 6:622005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Koh MY, Lemos R Jr, Liu X and Powis G: The
hypoxia-associated factor switches cells from HIF-1α- to
HIF-2α-dependent signaling promoting stem cell characteristics,
aggressive tumor growth and invasion. Cancer Res. 71:4015–4027.
2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Qian DZ, Wang X, Kachhap SK, Kato Y, Wei
Y, Zhang L, Atadja P and Pili R: The histone deacetylase inhibitor
NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect
in combination with the vascular endothelial growth factor receptor
tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res.
64:6626–6634. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nakanishi R, Oka N, Nakatsuji H, Koizumi
T, Sakaki M, Takahashi M, Fukumori T and Kanayama HO: Effect of
vascular endothelial growth factor and its receptor inhibitor on
proliferation and invasion in bladder cancer. Urol Int. 83:98–106.
2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Masood R, Cai J, Zheng T, Smith DL, Hinton
DR and Gill PS: Vascular endothelial growth factor (VEGF) is an
autocrine growth factor for VEGF receptor-positive human tumors.
Blood. 98:1904–1913. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dias S, Hattori K, Zhu Z, Heissig B, Choy
M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, et al: Autocrine
stimulation of VEGFR-2 activates human leukemic cell growth and
migration. J Clin Invest. 106:511–521. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang W, Qi L, Tan M, Zhang Z, Du J, Wei X
and Yao X: Effect of platelet-derived growth factor-B on renal cell
carcinoma growth and progression. Urol Oncol. 33:168.e17–e27. 2015.
View Article : Google Scholar
|
24
|
Marech I, Gadaleta CD and Ranieri G:
Possible prognostic and therapeutic significance of c-Kit
expression, mast cell count and microvessel density in renal cell
carcinoma. Int J Mol Sci. 15:13060–13076. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dent P: Crosstalk between ERK, AKT and
cell survival. Cancer Biol Ther. 15:245–246. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Epstein AC, Gleadle JM, McNeill LA,
Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI,
Dhanda A, et al: C. elegans EGL-9 and mammalian homologs define a
family of dioxygenases that regulate HIF by prolyl hydroxylation.
Cell. 107:43–54. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sowter HM, Raval RR, Moore JW, Ratcliffe
PJ and Harris AL: Predominant role of hypoxia-inducible
transcription factor (Hif)-1alpha versus Hif-2alpha in regulation
of the transcriptional response to hypoxia. Cancer Res.
63:6130–6134. 2003.PubMed/NCBI
|
28
|
Shinojima T, Oya M, Takayanagi A, Mizuno
R, Shimizu N and Murai M: Renal cancer cells lacking hypoxia
inducible factor (HIF)-1alpha expression maintain vascular
endothelial growth factor expression through HIF-2alpha.
Carcinogenesis. 28:529–536. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bai L, Yang JC, Ok JH, Mack PC, Kung HJ
and Evans CP: Simultaneous targeting of Src kinase and receptor
tyrosine kinase results in synergistic inhibition of renal cell
carcinoma proliferation and migration. Int J Cancer. 130:2693–2702.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao D, Zhai B, He C, Tan G, Jiang X, Pan
S, Dong X, Wei Z, Ma L, Qiao H, et al: Upregulation of HIF-2α
induced by sorafenib contributes to the resistance by activating
the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell
Signal. 26:1030–1039. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tanaka T, Torigoe T, Hirohashi Y, Sato E,
Honma I, Kitamura H, Masumori N, Tsukamoto T and Sato N:
Hypoxia-inducible factor (HIF)-independent expression mechanism and
novel function of HIF prolyl hydroxylase-3 in renal cell carcinoma.
J Cancer Res Clin Oncol. 140:503–513. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lieubeau-Teillet B, Rak J, Jothy S,
Iliopoulos O, Kaelin W and Kerbel RS: von Hippel-Lindau
gene-mediated growth suppression and induction of differentiation
in renal cell carcinoma cells grown as multicellular tumor
spheroids. Cancer Res. 58:4957–4962. 1998.PubMed/NCBI
|
33
|
Qian DZ, Kachhap SK, Collis SJ, Verheul
HM, Carducci MA, Atadja P and Pili R: Class II histone deacetylases
are associated with VHL-independent regulation of hypoxia-inducible
factor 1 alpha. Cancer Res. 66:8814–8821. 2006. View Article : Google Scholar : PubMed/NCBI
|