Pulmonary toxicity generated from radiotherapeutic treatment of thoracic malignancies (Review)
- Authors:
- Guodong Deng
- Ning Liang
- Jian Xie
- Hui Luo
- Lili Qiao
- Jingxin Zhang
- Dawei Wang
- Jiandong Zhang
-
Affiliations: Department of Radiation Oncology, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China, Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China, Department of Oncology, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China, Division of Oncology, Graduate School, Weifang Medical College, Weifang, Shandong 261053, P.R. China, Department of Radiology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China - Published online on: May 26, 2017 https://doi.org/10.3892/ol.2017.6268
- Pages: 501-511
-
Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Graves PR, Siddiqui F, Anscher MS and Movsas B: Radiation pulmonary toxicity: From mechanisms to management. Semin Radiat Oncol. 20:201–207. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues G, Lock M, D'Souza D, Yu E and Van Dyk J: Prediction of radiation pneumonitis by dose-volume histogram parameters in lung cancer-a systematic review. Radiother Oncol. 71:127–138. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Anscher MS and Lind PA: Radiation-induced pulmonary toxicity: A dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys. 51:650–659. 2001. View Article : Google Scholar : PubMed/NCBI | |
Barriger RB, Fakiris AJ, Hanna N, Yu M, Mantravadi P and McGarry RC: Dose-volume analysis of radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent cisplatinum and etoposide with or without consolidation docetaxel. Int J Radiat Oncol Biol Phys. 78:1381–1386. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ramella S, Trodella L, Mineo TC, Pompeo E, Stimato G, Gaudino D, Valentini V, Cellini F, Ciresa M, Fiore M, et al: Adding ipsilateral V20 and V30 to conventional dosimetric constraints predicts radiation pneumonitis in stage IIIA-B NSCLC treated with combined-modality therapy. Int J Radiat Oncol Biol Phys. 76:110–115. 2010. View Article : Google Scholar : PubMed/NCBI | |
Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE and Marks LB: Imaging radiation-induced normal tissue injury. Radiat Res. 177:449–466. 2012. View Article : Google Scholar : PubMed/NCBI | |
Koenig TR, Munden RF, Erasmus JJ, Sabloff BS, Gladish GW, Komaki R and Stevens CW: Radiation injury of the lung after three-dimensional conformal radiation therapy. AJR Am J Roentgenol. 178:1383–1388. 2002. View Article : Google Scholar : PubMed/NCBI | |
Linda A, Trovo M and Bradley JD: Radiation injury of the lung after stereotactic body radiation therapy (SBRT) for lung cancer: A timeline and pattern of CT changes. Eur J Radiol. 79:147–154. 2011. View Article : Google Scholar : PubMed/NCBI | |
McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N and Guerrero T: [18F]-FDG uptake dose-response correlates with radiation pneumonitis in lung cancer patients. Radiothe Oncol. 104:52–57. 2012. View Article : Google Scholar | |
Shioya S, Tsuji C, Kurita D, Katoh H, Tsuda M, Haida M, Kawana A and Ohta Y: Early damage to lung tissue after irradiation detected by the magnetic resonance T2 relaxation time. Radiat Res. 148:359–364. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ireland RH, Din OS, Swinscoe JA, Woodhouse N, van Beek EJ, Wild JM and Hatton MQ: Detection of radiation-induced lung injury in non-small cell lung cancer patients using hyperpolarized helium-3 magnetic resonance imaging. Radiother Oncol. 97:244–248. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang XJ, Sun JG, Sun J, Ming H, Wang XX, Wu L and Chen ZT: Prediction of radiation pneumonitis in lung cancer patients: A systematic review. J Cancer Res Clin Oncol. 138:2103–2116. 2012. View Article : Google Scholar : PubMed/NCBI | |
Komaki R, Lee JS, Milas L, Lee HK, Fossella FV, Herbst RS, Allen PK, Liao Z, Stevens CW, Lu C, et al: Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small-cell lung cancer: Report of a randomized comparative trial. Int J Radiat Oncol Biol Phys. 58:1369–1377. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ghosh SN, Zhang R, Fish BL, Semenenko VA, Li XA, Moulder JE, Jacobs ER and Medhora M: Renin-Angiotensin system suppression mitigates experimental radiation pneumonitis. Int J Radiat Oncol Biol Phys. 75:1528–1536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ozturk B, Egehan I, Atavci S and Kitapci M: Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: A double-blind randomized trial. Int J Radiat Oncol Biol Phys. 58:213–219. 2004. View Article : Google Scholar : PubMed/NCBI | |
López Rodríguez M and Cerezo Padellano L: Toxicity associated to radiotherapy treatment in lung cancer patients. Clin Transl Oncol. 9:506–512. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsoutsou PG and Koukourakis MI: Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys. 66:1281–1293. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rubin P, Siemann DW, Shapiro DL, Finkelstein JN and Penney DP: Surfactant release as an early measure of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 9:1669–1673. 1983. View Article : Google Scholar : PubMed/NCBI | |
Almeida C, Nagarajan D, Tian J, Leal SW, Wheeler K, Munley M, Blackstock W and Zhao W: The role of alveolar epithelium in radiation-induced lung injury. PLoS One. 8:e536282013. View Article : Google Scholar : PubMed/NCBI | |
Citrin DE, Shankavaram U, Horton JA, Shield W III, Zhao S, Asano H, White A, Sowers A, Thetford A and Chung EJ: Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst. 105:1474–1484. 2013. View Article : Google Scholar : PubMed/NCBI | |
Piguet PF: Is ‘tumor necrosis factor’ the major effector of pulmonary fibrosis? Eur Cytokine Netw. 1:257–258. 1990.PubMed/NCBI | |
Sime PJ: The antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis. J Investig Med. 56:534–538. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grgic I, Duffield JS and Humphreys BD: The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. 27:183–193. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nagarajan D, Melo T, Deng Z, Almeida C and Zhao W: ERK/GSK3β/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med. 52:983–992. 2012. View Article : Google Scholar : PubMed/NCBI | |
Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP and Strieter RM: Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 114:438–446. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yano H, Hamanaka R, Nakamura M, Sumiyoshi H, Matsuo N and Yoshioka H: Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis. Biochem Biophys Res Commun. 418:457–463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fine A and Goldstein RH: The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem. 262:3897–3902. 1987.PubMed/NCBI | |
Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S and Horie T: Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 163:152–157. 2001. View Article : Google Scholar : PubMed/NCBI | |
Han G, Zhang H, Xie CH and Zhou YF: Th2-like immune response in radiation-induced lung fibrosis. Oncol Rep. 26:383–388. 2011.PubMed/NCBI | |
Yang K, Palm J, König J, Seeland U, Rosenkranz S, Feiden W, Rübe C and Rübe CE: Matrix-metallo-proteinases and their tissue inhibitors in radiation-induced lung injury. Int J Radiat Biol. 83:665–676. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ding NH, Li JJ and Sun LQ: Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets. 14:1347–1356. 2013. View Article : Google Scholar : PubMed/NCBI | |
Medhora M, Gao F, Jacobs ER and Moulder JE: Radiation damage to the lung: Mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology. 17:66–71. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, Bradley JD, Kim TH, Ramella S, Marks LB, et al: Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: An international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 85:444–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mehta V: Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys. 63:5–24. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marks LB, Fan M, Clough R, Munley M, Bentel G, Coleman RE, Jaszczak R, Hollis D and Anscher M: Radiation-induced pulmonary injury: Symptomatic versus subclinical endpoints. Int J Radiat Biol. 76:469–475. 2000. View Article : Google Scholar : PubMed/NCBI | |
Goethals I, Dierckx R, De Meerleer G, De Sutter J, De Winter O, De Neve W and Van de Wiele C: The role of nuclear medicine in the prediction and detection of radiation-associated normal pulmonary and cardiac damage. J Nucl Med. 44:1531–1539. 2003.PubMed/NCBI | |
Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA and Perez CA: Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 45:323–329. 1999. View Article : Google Scholar : PubMed/NCBI | |
Libshitz HI and Shuman LS: Radiation-induced pulmonary change: CT findings. J Comput Assist Tomogr. 8:15–19. 1984. View Article : Google Scholar : PubMed/NCBI | |
Choi YW, Munden RF, Erasmus JJ, Park KJ, Chung WK, Jeon SC and Park CK: Effects of radiation therapy on the lung: Radiologic appearances and differential diagnosis. Radiographics. 24:985–998. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ghafoori P, Marks LB, Vujaskovic Z and Kelsey CR: Radiation-induced lung injury: Assessment, management, and prevention. Oncology (Williston Park). 22:37–47, 52-53. 2008.PubMed/NCBI | |
Zhang W, Wang J, Tang M, Pan J, Bai P, Lin D, Qian F, Lin F, Yang X and Zhang S: Quantitative study of lung perfusion SPECT scanning and pulmonary function testing for early radiation-induced lung injury in patients with locally advanced non-small cell lung cancer. Exp Ther Med. 3:631–635. 2012.PubMed/NCBI | |
Hart JP, McCurdy MR, Ezhil M, Wei W, Khan M, Luo D, Munden RF, Johnson VE and Guerrero TM: Radiation pneumonitis: Correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys. 71:967–971. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tucker SL, Li M, Xu T, Gomez D, Yuan X, Yu J, Liu Z, Yin M, Guan X, Wang LE, et al: Incorporating single-nucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 85:251–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siva S, Hardcastle N, Kron T, Bressel M, Callahan J, MacManus MP, Shaw M, Plumridge N, Hicks RJ, Steinfort D, et al: Ventilation/perfusion positron emission tomography-based assessment of radiation injury to lung. Int J Radiat Oncol Biol Phys. 93:408–417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Waissi W, Noël G and Giraud P: Follow-up after lung stereotactic radiotherapy. Cancer Radiother. 19:566–572. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim TH, Cho KH, Pyo HR, Lee JS, Zo JI, Lee DH, Lee JM, Kim HY, Hwangbo B, Park SY, et al: Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology. 235:208–215. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lyman JT: Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 8:S13–S19. 1985. View Article : Google Scholar : PubMed/NCBI | |
Tucker SL, Liu HH, Liao Z, Wei X, Wang S, Jin H, Komaki R, Martel MK and Mohan R: Analysis of radiation pneumonitis risk using a generalized Lyman model. Int J Radiat Oncol Biol Phys. 72:568–574. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rübe CE, Palm J, Erren M, Fleckenstein J, König J, Remberger K and Rübe C: Cytokine plasma levels: Reliable predictors for radiation pneumonitis? PLoS One. 3:e28982008. View Article : Google Scholar : PubMed/NCBI | |
Tisdale MJ: Cachexia in cancer patients. Nat Rev Cancer. 2:862–871. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kong F, Jirtle RL, Huang DH, Clough RW and Anscher MS: Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer. 86:1712–1719. 1999. View Article : Google Scholar : PubMed/NCBI | |
Stenmark MH, Cai XW, Shedden K, Hayman JA, Yuan S, Ritter T, Ten Haken RK, Lawrence TS and Kong FM: Combining physical and biologic parameters to predict radiation-induced lung toxicity in patients with non-small-cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys. 84:e217–e222. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Imai Y, Fujishima T, Shiratori M, Murakami S, Chiba H, Kon H, Kuroki Y and Abe S: Diagnostic significance of surfactant proteins A and D in sera from patients with radiation pneumonitis. Eur Respir J. 17:481–487. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hartsell WF, Scott CB, Dundas GS, Mohiuddin M, Meredith RF, Rubin P and Weigensberg IJ: Can serum markers be used to predict acute and late toxicity in patients with lung cancer? Analysis of RTOG 91–03. Am J Clin Oncol. 30:368–376. 2007. View Article : Google Scholar : PubMed/NCBI | |
Parashar B, Edwards A, Mehta R, Pasmantier M, Wernicke AG, Sabbas A, Kerestez RS, Nori D and Chao KS: Chemotherapy significantly increases the risk of radiation pneumonitis in radiation therapy of advanced lung cancer. Am J Clin Oncol. 34:160–164. 2011.PubMed/NCBI | |
Kocak Z, Yu X, Zhou SM, D'Amico TA, Hollis D, Kahn D, Tisch A, Shafman TD and Marks LB: The impact of pre-radiotherapy surgery on radiation-induced lung injury. Clin Oncol (R Coll Radiol). 17:210–216. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vogelius IR and Bentzen SM: A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis. Acta Oncol. 51:975–983. 2012. View Article : Google Scholar : PubMed/NCBI | |
US Department of Health and Human Services, . Common Terminology Criteria for Adverse Events (CTCAE). Version 4.0. National Institutes of Health; 2009 | |
Cox JD, Stetz J and Pajak TF: Toxicity criteria of the radiation therapy oncology group (RTOG) and the european organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys. 31:1341–1346. 1995. View Article : Google Scholar : PubMed/NCBI | |
Green S and Weiss GR: Southwest oncology group standard response criteria, endpoint definitions and toxicity criteria. Invest New Drugs. 10:239–253. 1992. View Article : Google Scholar : PubMed/NCBI | |
Eastern Cooperative Oncology Group, . ECOG Common Toxicity Criteria. http://ecog.dfci.harvard.edu/general/common_tox.html | |
S G: World Health Organization Handbook for reporting results of cancer treatment. WHO Offset Publication; 1979 | |
Tucker SL, Jin H, Wei X, Wang S, Martel MK, Komaki R, Liu HH, Mohan R, Chen Y, Cox JD and Liao Z: Impact of toxicity grade and scoring system on the relationship between mean lung dose and risk of radiation pneumonitis in a large cohort of patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 77:691–698. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kong FM, Ten Haken R, Eisbruch A and Lawrence TS: Non-small cell lung cancer therapy-related pulmonary toxicity: An update on radiation pneumonitis and fibrosis. Semin Oncol. 32 2 Suppl 3:S42–S54. 2005. View Article : Google Scholar : PubMed/NCBI | |
Capizzi RL and Oster W: Chemoprotective and radioprotective effects of amifostine: An update of clinical trials. Int J Hematol. 72:425–435. 2000.PubMed/NCBI | |
Antonadou D, Coliarakis N, Synodinou M, Athanassiou H, Kouveli A, Verigos C, Georgakopoulos G, Panoussaki K, Karageorgis P and Throuvalas N; Clinical Radiation Oncololgy Hellenic Group, : Randomized phase III trial of radiation treatment +/− amifostine in patients with advanced-stage lung cancer. Int J Radiat Oncol Biol Phys. 51:915–922. 2001. View Article : Google Scholar : PubMed/NCBI | |
Antonadou D, Throuvalas N, Petridis A, Bolanos N, Sagriotis A and Synodinou M: Effect of amifostine on toxicities associated with radiochemotherapy in patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 57:402–408. 2003. View Article : Google Scholar : PubMed/NCBI | |
Koukourakis MI, Panteliadou M, Abatzoglou IM, Sismanidou K, Sivridis E and Giatromanolaki A: Postmastectomy hypofractionated and accelerated radiation therapy with (and without) subcutaneous amifostine cytoprotection. Int J Radiat Oncol Biol Phys. 85:e7–e13. 2013. View Article : Google Scholar : PubMed/NCBI | |
Folz RJ, Guan J, Seldin MF, Oury TD, Enghild JJ and Crapo JD: Mouse extracellular superoxide dismutase: Primary structure, tissue-specific gene expression, chromosomal localization, and lung in situ hybridization. Am J Respir Cell Mol Biol. 17:393–403. 1997. View Article : Google Scholar : PubMed/NCBI | |
Delanian S, Baillet F, Huart J, Lefaix JL, Maulard C and Housset M: Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: Clinical trial. Radiother Oncol. 32:12–20. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lefaix JL, Delanian S, Leplat JJ, Tricaud Y, Martin M, Nimrod A, Baillet F and Daburon F: Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: An experimental study. Int J Radiat Oncol Biol Phys. 35:305–312. 1996. View Article : Google Scholar : PubMed/NCBI | |
Epperly MW, Bray JA, Krager S, Berry LM, Gooding W, Engelhardt JF, Zwacka R, Travis EL and Greenberger JS: Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Radiat Oncol Biol Phys. 43:169–181. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vozenin-Brotons MC, Sivan V, Gault N, Renard C, Geffrotin C, Delanian S, Lefaix JL and Martin M: Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free Radic Biol Med. 30:30–42. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Fish BL, Szabo A, Doctrow SR, Kma L, Molthen RC, Moulder JE, Jacobs ER and Medhora M: Short-Term Treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res. 178:468–480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Su Y, Hou X, He H, Liu S, Wu J and Rao P: Protective effect of recombinant protein SOD-TAT on radiation-induced lung injury in mice. Life Sci. 91:89–93. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lavoie JL and Sigmund CD: Minireview: Overview of the renin-angiotensin system-an endocrine and paracrine system. Endocrinology. 144:2179–2183. 2003. View Article : Google Scholar : PubMed/NCBI | |
Border WA and Noble NA: Interactions of transforming growth factor- and angiotensin II in renal fibrosis. Hypertension. 31:181–188. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Garre D, Ruiz-Ortega M, Ortego M, Largo R, López-Armada MJ, Plaza JJ, González E and Egido J: Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth. Hypertension. 27:885–892. 1996. View Article : Google Scholar : PubMed/NCBI | |
Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V and Egido J: Inflammation and angiotensin II. Int J Biochem Cell Biol. 35:881–900. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cohen EP, Bedi M, Irving AA, Jacobs E, Tomic R, Klein J, Lawton CA and Moulder JE: Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int J Radiat Oncol Biol Phys. 83:292–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chopra M, Scott N, McMurray J, McLay J, Bridges A, Smith WE and Belch JJ: Captopril: A free radical scavenger. Br J Clin Pharmacol. 27:396–399. 1989. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liao Z, Zhuang Y, Xu T, Nguyen QN, Levy LB, O'Reilly M, Gold KA and Gomez DR: Do angiotensin-converting enzyme inhibitors reduce the risk of symptomatic radiation pneumonitis in patients with non-small cell lung cancer after definitive radiation therapy? Analysis of a single-institution database. Int J Radiat Oncol Biol Phys. 87:1071–1077. 2013. View Article : Google Scholar : PubMed/NCBI | |
Molteni A, Wolfe LF, Ward WF, Ts'ao CH, Molteni LB, Veno P, Fish BL, Taylor JM, Quintanilla N, Herndon B and Moulder JE: Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Des. 13:1307–1316. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA and Border W: Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int. 69:105–113. 2006. View Article : Google Scholar : PubMed/NCBI | |
Montes E, Ruiz V, Checa M, Maldonado V, Melendez-Zajgla J, Montaño M, Ordoñez-Razo R, Cisneros J, García-de-Alba C, Pardo A and Selman M: Renin is an angiotensin-independent profibrotic mediator: Role in pulmonary fibrosis. Eur Respir J. 39:141–148. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ran XZ, Ran X, Zong ZW, Liu DQ, Xiang GM, Su YP and Zheng HE: Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro. J Radiat Res. 51:527–533. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ostrau C, Hülsenbeck J, Herzog M, Schad A, Torzewski M, Lackner KJ and Fritz G: Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol. 92:492–499. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fritz G, Henninger C and Huelsenbeck J: Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br Med Bull. 97:17–26. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mathew B, Huang Y, Jacobson JR, Berdyshev E, Gerhold LM, Wang T, Moreno-Vinasco L, Lang G, Zhao Y, Chen CT, et al: Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression. Am J Respir Cell Mol Biol. 44:415–422. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wedlake LJ, Silia F, Benton B, Lalji A, Thomas K, Dearnaley DP, Blake P, Tait D, Khoo VS and Andreyev HJ: Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Eur J Cancer. 48:2117–2124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin SL, Chen RH, Chen YM, Chiang WC, Lai CF, Wu KD and Tsai TJ: Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol. 16:2702–2713. 2005. View Article : Google Scholar : PubMed/NCBI | |
Misirlioglu CH, Demirkasimoglu T, Kucukplakci B, Sanri E and Altundag K: Pentoxifylline and alpha-tocopherol in prevention of radiation-induced lung toxicity in patients with lung cancer. Med Oncol. 24:308–311. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Song SL, Peng RY, Wang DW, Jin MH, Gao YB and Ma JJ: Effects of SB203580 and WP631 on Smad signal transduction pathway in lung fibroblasts after irradiation. Ai Zheng. 27:698–702. 2008.(In Chinese). PubMed/NCBI | |
Anscher MS, Thrasher B, Zgonjanin L, Rabbani ZN, Corbley MJ, Fu K, Sun L, Lee WC, Ling LE and Vujaskovic Z: Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 71:829–837. 2008. View Article : Google Scholar : PubMed/NCBI | |
Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Gröne HJ, Yingling J, et al: LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals. Clin Cancer Res. 18:3616–3627. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Gröne HJ, Lipson KE and Huber PE: Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 201:925–935. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li M, Abdollahi A, Gröne HJ, Lipson KE, Belka C and Huber PE: Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiat Oncol. 4:662009. View Article : Google Scholar : PubMed/NCBI | |
Thomas DM, Fox J and Haston CK: Imatinib therapy reduces radiation-induced pulmonary mast cell influx and delays lung disease in the mouse. Int J Radiat Biol. 86:436–444. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yazici G, Yildiz F, Iskit A, Erdemli E, Surucu S, Firat P, Hayran M, Ozyigit G and Cengiz M: The effect of vitamin D prophylaxis on radiation induced pulmonary damage. J Radiat Res. 52:616–621. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shu HK, Yoon Y, Hong S, Xu K, Gao H, Hao C, Torres-Gonzalez E, Nayra C, Rojas M and Shim H: Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis. PLoS One. 8:e797682013. View Article : Google Scholar : PubMed/NCBI | |
O'Sullivan B and Levin W: Late radiation-related fibrosis: Pathogenesis, manifestations, and current management. Semin Radiat Oncol. 13:274–289. 2003. View Article : Google Scholar : PubMed/NCBI |