1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Waller LP, Deshpande V and Pyrsopoulos N:
Hepatocellular carcinoma: A comprehensive review. World J Hepatol.
7:2648–2663. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Llovet JM, Ricci S, Mazzaferro V, Hilgard
P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A,
et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J
Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hernandez-Gea V, Toffanin S, Friedman SL
and Llovet JM: Role of the microenvironment in the pathogenesis and
treatment of hepatocellular carcinoma. Gastroenterology.
144:512–527. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gorbachev AV and Fairchild RL: Regulation
of chemokine expression in the tumor microenvironment. Crit Rev
Immunol. 34:103–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Horuk R: Chemokine receptors. Cytokine
Growth Factor Rev. 12:313–335. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Singh S, Sadanandam A and Singh RK:
Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis
Rev. 26:453–467. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Singh R, Lillard JW Jr and Singh S:
Chemokines: key players in cancer progression and metastasis. Front
Biosci (Schol Ed). 3:1569–1582. 2011. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Stone MJ, Hayward JA, Huang C, E Huma Z
and Sanchez J: Mechanisms of Regulation of the Chemokine-Receptor
Network. Int J Mol Sci. 18(pii): E3422017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Guo JC, Li J, Zhou L, Yang JY, Zhang ZG,
Liang ZY, Zhou WX, You L, Zhang TP and Zhao YP: CXCL12-CXCR7 axis
contributes to the invasive phenotype of pancreatic cancer.
Oncotarget. 7:62006–62018. 2016.PubMed/NCBI
|
11
|
Kucia M, Reca R, Miekus K, Wanzeck J,
Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chatterjee S, Azad B Behnam and Nimmagadda
S: The intricate role of CXCR4 in cancer. Adv Cancer Res.
124:31–82. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sun X, Cheng G, Hao M, Zheng J, Zhou X,
Zhang J, Taichman RS, Pienta KJ and Wang J: CXCL12/CXCR4/CXCR7
chemokine axis and cancer progression. Cancer Metastasis Rev.
29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shibuta K, Mori M, Shimoda K, Inoue H,
Mitra P and Barnard GF: Regional expression of CXCL12/CXCR4 in
liver and hepatocellular carcinoma and cell-cycle variation during
in vitro differentiation. Jpn J Cancer Res. 93:789–797. 2002.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu H, Pan Z, Li A, Fu S, Lei Y, Sun H, Wu
M and Zhou W: Roles of chemokine receptor 4 (CXCR4) and chemokine
ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells.
Cell Mol Immunol. 5:373–378. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiang ZL, Zeng ZC, Tang ZY, Fan J, Zhuang
PY, Liang Y, Tan YS and He J: Chemokine receptor CXCR4 expression
in hepatocellular carcinoma patients increases the risk of bone
metastases and poor survival. BMC Cancer. 9:1762009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao S, Wang J and Qin C: Blockade of
CXCL12/CXCR4 signaling inhibits intrahepatic cholangiocarcinoma
progression and metastasis via inactivation of canonical Wnt
pathway. J Exp Clin Cancer Res. 33:1032014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ghanem I, Riveiro ME, Paradis V, Faivre S,
de Parga PM and Raymond E: Insights on the CXCL12-CXCR4 axis in
hepatocellular carcinoma carcinogenesis. Am J Transl Res.
6:340–352. 2014.PubMed/NCBI
|
19
|
Hu F, Miao L, Zhao Y, Xiao YY and Xu Q: A
meta-analysis for C-X-C chemokine receptor type 4 as a prognostic
marker and potential drug target in hepatocellular carcinoma. Drug
Des Devel Ther. 9:3625–3633. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang Y, Yu H, Shan Y, Tao C, Wu F, Yu Z,
Guo P, Huang J, Li J, Zhu Q, et al: EphA1 activation promotes the
homing of endothelial progenitor cells to hepatocellular carcinoma
for tumor neovascularization through the SDF-1/CXCR4 signaling
pathway. J Exp Clin Cancer Res. 35:652016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xi HQ, Wu XS, Wei B and Chen L: Eph
receptors and ephrins as targets for cancer therapy. J Cell Mol
Med. 16:2894–2909. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schimanski CC, Bahre R, Gockel I, Müller
A, Frerichs K, Hörner V, Teufel A, Simiantonaki N, Biesterfeld S,
Wehler T, et al: Dissemination of hepatocellular carcinoma is
mediated via chemokine receptor CXCR4. Br J Cancer. 95:210–217.
2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xiang ZL, Zeng ZC, Tang ZY, Fan J, Sun HC,
Wu WZ and Tan YS: Nuclear accumulation of CXCR4 and overexpressions
of VEGF-C and CK19 are associated with a higher risk of lymph node
metastasis in hepatocellular carcinoma. Zhonghua Zhong Liu Za Zhi.
32:344–349. 2010.(In Chinese). PubMed/NCBI
|
24
|
Kim SW, Kim HY, Song IC, Jin SA, Lee HJ,
Yun HJ, Kim S and Jo DY: Cytoplasmic trapping of CXCR4 in
hepatocellular carcinoma cell lines. Cancer Res Treat. 40:53–61.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ishii T, Nishihara M, Ma F, Ebihara Y,
Tsuji K, Asano S, Nakahata T and Maekawa T: Expression of stromal
cell-derived factor-1/pre-B cell growth-stimulating factor
receptor, CXC chemokine receptor 4, on CD34+ human bone marrow
cells is a phenotypic alteration for committed lymphoid
progenitors. J Immunol. 163:3612–3620. 1999.PubMed/NCBI
|
26
|
Kollet O, Shivtiel S, Chen YQ, Suriawinata
J, Thung SN, Dabeva MD, Kahn J, Spiegel A, Dar A, Samira S, et al:
HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+
stem cell recruitment to the liver. J Clin Invest. 112:160–169.
2003. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Dar A, Kollet O and Lapidot T: Mutual,
reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone
marrow stromal cells regulate human stem cell migration and
development in NOD/SCID chimeric mice. Exp Hematol. 34:967–975.
2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bertran E, Crosas-Molist E, Sancho P, Caja
L, Lopez-Luque J, Navarro E, Egea G, Lastra R, Serrano T, Ramos E
and Fabregat I: Overactivation of the TGF-β pathway confers a
mesenchymal-like phenotype and CXCR4-dependent migratory properties
to liver tumor cells. Hepatology. 58:2032–2044. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vlahakis SR, Villasis-Keever A, Gomez T,
Vanegas M, Vlahakis N and Paya CV: G protein-coupled chemokine
receptors induce both survival and apoptotic signaling pathways. J
Immunol. 169:5546–5554. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bertran E, Caja L, Navarro E, Sancho P,
Mainez J, Murillo MM, Vinyals A, Fabra A and Fabregat I: Role of
CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that
have undergone epithelial-mesenchymal transition in response to the
transforming growth factor-beta. Cell Signal. 21:1595–1606. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
García-Irigoyen O, Latasa MU, Carotti S,
Uriarte I, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini
S, Benito P, Ladero JM, et al: Matrix metalloproteinase 10
contributes to hepatocarcinogenesis in a novel crosstalk with the
stromal derived factor 1/C-X-C chemokine receptor 4 axis.
Hepatology. 62:166–178. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jeng KS, Sheen IS, Jeng WJ, Yu MC, Tsai
HH, Chang FY and Su JC: Blockade of the sonic hedgehog pathway
effectively inhibits the growth of hepatoma in mice: An in vivo
study. Oncol Lett. 4:1158–1162. 2012.PubMed/NCBI
|
33
|
Jeng KS, Sheen IS, Jeng WJ, Yu MC, Hsiau
HI, Chang FY and Tsai HH: Activation of the sonic hedgehog
signaling pathway occurs in the CD133 positive cells of mouse liver
cancer Hepa 1–6 cells. Onco Targets Ther. 6:1047–1055. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Jeng KS, Sheen IS, Jeng WJ, Lin CC, Lin
CK, Su JC, Yu MC and Fang HY: High expression of patched homolog-1
messenger RNA and glioma-associated oncogene-1 messenger RNA of
sonic hedgehog signaling pathway indicates a risk of postresection
recurrence of hepatocellular carcinoma. Ann Surg Oncol. 20:464–473.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jeng KS, Sheen IS, Jeng WJ, Yu MC, Hsiau
HI and Chang FY: High expression of Sonic Hedgehog signaling
pathway genes indicates a risk of recurrence of breast carcinoma.
Onco Targets Ther. 7:79–86. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Singh AP, Arora S, Bhardwaj A, Srivastava
SK, Kadakia MP, Wang B, Grizzle WE, Owen LB and Singh S:
CXCL12/CXCR4 protein signaling axis induces sonic hedgehog
expression in pancreatic cancer cells via extracellular regulated
kinase- and Akt kinase-mediated activation of nuclear factor κB:
Implications for bidirectional tumor-stromal interactions. J Biol
Chem. 287:39115–39124. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sengupta R, Dubuc A, Ward S, Yang L,
Northcott P, Woerner BM, Kroll K, Luo J, Taylor MD, Wechsler-Reya
RJ and Rubin JB: CXCR4 activation defines a new subgroup of Sonic
hedgehog-driven medulloblastoma. Cancer Res. 72:122–132. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Tomuleasa C, Soritau O, Rus-Ciuca D, Pop
T, Todea D, Mosteanu O, Pintea B, Foris V, Susman S, Kacsó G and
Irimie A: Isolation and characterization of hepatic cancer cells
with stem-like properties from hepatocellular carcinoma. J
Gastrointestin Liver Dis. 19:61–67. 2010.PubMed/NCBI
|
39
|
Zhu L, Zhang W, Wang J and Liu R: Evidence
of CD90+CXCR4+ cells as circulating tumor stem cells in
hepatocellular carcinoma. Tumour Biol. 36:5353–5360. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Sukowati CH, Anfuso B, Torre G,
Francalanci P, Crocè LS and Tiribelli C: The expression of
CD90/Thy-1 in hepatocellular carcinoma: An in vivo and in vitro
study. PLoS One. 8:e768302013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yu C, Wang Z, Xu X, Xiang W and Huang X:
Circulating hepatocellular carcinoma cells are characterized by
CXCR4 and MMP26. Cell Physiol Biochem. 36:2393–2402. 2015.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai
P, Chu PW, Lam CT, Poon RT and Fan ST: Significance of CD90+ cancer
stem cells in human liver cancer. Cancer Cell. 13:153–166. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau
CK, Li ML, Tam KH, Lam CT, Poon RT and Fan ST: Identification of
local and circulating cancer stem cells in human liver cancer.
Hepatology. 47:919–928. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Piao LS, Hur W, Kim TK, Hong SW, Kim SW,
Choi JE, Sung PS, Song MJ, Lee BC, Hwang D and Yoon SK: CD133+
liver cancer stem cells modulate radioresistance in human
hepatocellular carcinoma. Cancer Lett. 315:129–137. 2012.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Shah AD, Bouchard MJ and Shieh AC:
Interstitial fluid flow increases hepatocellular carcinoma cell
invasion through CXCR4/CXCL12 and MEK/ERK Signaling. PLoS One.
10:e01423372015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Honma N, Genda T, Matsuda Y, Yamagiwa S,
Takamura M, Ichida T and Aoyagi Y: MEK/ERK signaling is a critical
mediator for integrin-induced cell scattering in highly metastatic
hepatocellular carcinoma cells. Lab Invest. 86:687–696. 2006.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhu M, Guo J, Xia H, Li W, Lu Y, Dong X,
Chen Y, Xie X, Fu S and Li M: Alpha-fetoprotein activates AKT/mTOR
signaling to promote CXCR4 expression and migration of hepatoma
cells. Oncoscience. 2:59–70. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chen Y, Huang Y, Reiberger T, Duyverman
AM, Huang P, Samuel R, Hiddingh L, Roberge S, Koppel C, Lauwers GY,
et al: Differential effects of sorafenib on liver versus tumor
fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor
type 4 axis and myeloid differentiation antigen-positive myeloid
cell infiltration in mice. Hepatology. 59:1435–1447. 2014.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Gao DY, Lin TsT, Sung YC, Liu YC, Chiang
WH, Chang CC, Liu JY and Chen Y: CXCR4-targeted lipid-coated PLGA
nanoparticles deliver sorafenib and overcome acquired drug
resistance in liver cancer. Biomaterials. 67:194–203. 2015.
View Article : Google Scholar : PubMed/NCBI
|