1
|
Elkin EB, Pocus VH, Mushlin AI, Cigler T,
Atoria CL and Polaneczky MM: Facilitating informed decisions about
breast cancer screening: Development and evaluation of a web-based
decision aid for women in their 40s. BMC Med Inform Decis Mak.
17:292017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Crop F, Pasquier D, Baczkiewic A, Doré J,
Bequet L, Steux E, Gadroy A, Bouillon J, Florence C, Muszynski L,
et al: Surface imaging, laser positioning or volumetric imaging for
breast cancer with nodal involvement treated by helical
TomoTherapy. J Appl Clin Med Phys. 17:1–12. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wu D, Zeng L, Liu F, Zhong Q, Zhang D, Cai
C, Zhang W, Wu L and Chen H: Special AT-rich DNA-binding protein-1
expression is associated with liver cancer metastasis. Oncol Lett.
12:4377–4384. 2016.PubMed/NCBI
|
4
|
Stephen TL, Payne KK, Chaurio RA,
Allegrezza MJ, Zhu H, Perez-Sanz J, Perales-Puchalt A, Nguyen JM,
Vara-Ailor AE, Eruslanov EB, et al: SATB1 expression governs
epigenetic repression of PD-1 in tumor-reactive T cells. Immunity.
46:51–64. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li YC, Bu LL, Mao L, Ma SR, Liu JF, Yu GT,
Deng WW, Zhang WF and Sun ZJ: SATB1 promotes tumor metastasis and
invasiveness in oral squamous cell carcinoma. Oral Dis. 23:247–254.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee JJ, Kim M and Kim HP: Epigenetic
regulation of long noncoding RNA UCA1 by SATB1 in breast cancer.
BMB Rep. 49:578–583. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gottimukkala KP, Jangid R, Patta I,
Sultana DA, Sharma A, Misra-Sen J and Galande S: Regulation of
SATB1 during thymocyte development by TCR signaling. Mol Immunol.
77:34–43. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lim SG, Kim JK, Suk K and Lee WH:
Crosstalk between signals initiated from TLR4 and cell surface BAFF
results in synergistic induction of proinflammatory mediators in
THP-1 cells. Sci Rep. 7:458262017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu KC, Huang SS, Kuo YH, Ho YL, Yang CS,
Chang YS and Huang GJ: Ugonin M, a Helminthostachys
zeylanica constituent, prevents LPS-induced acute lung injury
through TLR4-mediated MAPK and NF-κB signaling pathways. Molecules.
22:E5732017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Simundic T, Jelakovic B, Dzumhur A, Turk
T, Sahinovic I, Dobrosevic B, Takac B and Barbic J: Interleukin 17A
and Toll-like receptor 4 in patients with arterial hypertension.
Kidney Blood Press Res. 42:99–108. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kowalczyk AE, Krazinski BE, Godlewski J,
Grzegrzolka J, Kiewisz J, Kwiatkowski P, Sliwinska-Jewsiewicka A,
Dziegiel P and Kmiec Z: SATB1 is down-regulated in clear cell renal
cell carcinoma and correlates with miR-21-5p overexpression and
poor prognosis. Cancer Genomics Proteomics. 13:209–217.
2016.PubMed/NCBI
|
12
|
Dickinson LA, Joh T, Kohwi Y and
Kohwi-Shigematsu T: A tissue-specific MAR/SAR DNA-binding protein
with unusual binding site recognition. Cell. 70:631–645. 1992.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Nixon BG and Li MO: Satb1: Restraining PD1
and T cell exhaustion. Immunity. 46:3–5. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kitagawa Y, Ohkura N, Kidani Y, Vandenbon
A, Hirota K, Kawakami R, Yasuda K, Motooka D, Nakamura S, Kondo M,
et al: Guidance of regulatory T cell development by Satb1-dependent
super-enhancer establishment. Nat Immunol. 18:173–183. 2017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kondo M, Tanaka Y, Kuwabara T, Naito T,
Kohwi-Shigematsu T and Watanabe A: SATB1 plays a critical role in
establishment of immune tolerance. J Immunol. 196:563–572. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Song G, Liu K, Yang X, Mu B, Yang J, He L,
Hu X, Li Q, Zhao Y, Cai X and Feng G: SATB1 plays an oncogenic role
in esophageal cancer by up-regulation of FN1 and PDGFRB.
Oncotarget. 8:17771–17784. 2017.PubMed/NCBI
|
17
|
Luan QX, Zhang BG, Li XJ and Guo MY:
MiR-129-5p is downregulated in breast cancer cells partly due to
promoter H3K27m3 modification and regulates epithelial-mesenchymal
transition and multi-drug resistance. Eur Rev Med Pharmacol Sci.
20:4257–4265. 2016.PubMed/NCBI
|
18
|
Yuan CL, Li L, Zhou X, Liz H and Han L:
Expression of SATB1 and HER2 in gastric cancer and its clinical
significance. Eur Rev Med Pharmacol Sci. 20:2256–2264.
2016.PubMed/NCBI
|
19
|
Liu X, Zheng Y, Qiao C, Qv F, Wang J, Ding
B, Sun Y and Wang Y: Expression of SATB1 and HER2 in breast cancer
and the correlations with clinicopathologic characteristics. Diagn
Pathol. 10:502015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Han HJ, Russo J, Kohwi Y and
Kohwi-Shigematsu T: SATB1 reprogrammes gene expression to promote
breast tumour growth and metastasis. Nature. 452:187–193. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Roberts MR, Sucheston-Campbell LE, Zirpoli
GR, Higgins M, Freudenheim JL, Bandera EV, Ambrosone CB and Yao S:
Single nucleotide variants in metastasis-related genes are
associated with breast cancer risk, by lymph node involvement and
estrogen receptor status, in women with European and African
ancestry. Mol Carcinog. 56:1000–1009. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pan Z, Jing W, He K, Zhang L and Long X:
SATB1 is correlated with progression and metastasis of breast
cancers: A meta-analysis. Cell Physiol Biochem. 38:1975–1983. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Medzhitov R, Preston-Hurlburt P and
Janeway CA Jr: A human homologue of the Drosophila toll
protein signals activation of adaptive immunity. Nature.
388:394–397. 1997. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Akira S, Uematsu S and Takeuchi O:
Pathogen recognition and innate immunity. Cell. 124:783–801. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Galdino H Jr, Saar Gomes R, Dos Santos JC,
Pessoni LL, Maldaner AE, Marques SM, Gomes CM, Dorta ML, de
Oliveira MA, Joosten LA, et al: Leishmania (Viannia)
braziliensis amastigotes induces the expression of TNFα and
IL-10 by human peripheral blood mononuclear cells in vitro in a
TLR4-dependent manner. Cytokine. 88:184–192. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yan B, Chen F, Xu L, Xing J and Wang X:
HMGB1-TLR4-IL23-IL17A axis promotes paraquat-induced acute lung
injury by mediating neutrophil infiltration in mice. Sci Rep.
7:5972017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Imai H, Fujita T, Kajiya M, Ouhara K,
Yoshimoto T, Matsuda S, Takeda K and Kurihara H: Mobilization of
TLR4 into lipid rafts by Aggregatibacter
Actinomycetemcomitans in gingival epithelial cells. Cell
Physiol Biochem. 39:1777–1786. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Schüller SS, Wisgrill L, Herndl E,
Spittler A, Förster-Waldl E, Sadeghi K, Kramer BW and Berger A:
Pentoxifylline modulates LPS-induced hyperinflammation in monocytes
of preterm infants in vitro. Pediatr Res. May 24–2017.(Epub ahead
of print). View Article : Google Scholar
|
29
|
Liu S, Wang X, Shi Y, Han L, Zhao Z, Zhao
C and Luo B: Toll-like receptor gene polymorphisms and
susceptibility to Epstein-Barr virus-associated and -negative
gastric carcinoma in Northern China. Saudi J Gastroenterol.
21:95–103. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Haricharan S and Brown P: TLR4 has a
TP53-dependent dual role in regulating breast cancer cell growth.
Proc Natl Acad Sci USA. 112:E3216–E3225. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang D, Taylor GM, Gilbert JR, Losee JE,
Sodhi CP, Hackam DJ, Billiar TR and Cooper GM: Enhanced calvarial
bone healing in CD11c-TLR4−/− and MyD88−/−
mice. Plast Reconstr Surg. 139:933e–940e. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tian Y, Li X, Li H, Lu Q, Sun G and Chen
H: Astragalus Mongholicus regulate the toll-like-receptor 4
meditated signal transduction of dendritic cells to restrain
stomach cancer cells. Afr J Tradit Complement Altern Med. 11:92–96.
2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Klink M, Nowak M, Kielbik M, Bednarska K,
Blus E, Szpakowski M, Szyllo K and Sulowska Z: The interaction of
HspA1A with TLR2 and TLR4 in the response of neutrophils induced by
ovarian cancer cells in vitro. Cell Stress Chaperones. 17:661–674.
2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang AC, Ma YB, Wu FX, Ma ZF, Liu NF, Gao
R, Gao YS and Sheng XG: TLR4 induces tumor growth and inhibits
paclitaxel activity in MyD88-positive human ovarian carcinoma in
vitro. Oncol Lett. 7:871–877. 2014.PubMed/NCBI
|
35
|
de Matos LG, Cândido EB, Vidigal PV,
Bordoni PH, Lamaita RM, Carneiro MM and da Silva-Filho AL:
Association between toll-like receptor and tumor necrosis factor
immunological pathways in uterine cervical neoplasms. Tumori.
103:81–86. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
He A, Ji R, Shao J, He C, Jin M and Xu Y:
TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation contribute
to the anti-inflammatory effect of V8 in LPS-induced human cervical
cancer SiHa cells. Inflammation. 39:172–181. 2016. View Article : Google Scholar : PubMed/NCBI
|