1
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Morris LG, Tuttle RM and Davies L:
Changing trends in the incidence of thyroid cancer in the united
states. JAMA Otolaryngol Head Neck Surg. 142:709–711. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Podnos YD, Smith D, Wagman LD and
Ellenhorn JD: The implication of lymph node metastasis on survival
in patients with well-differentiated thyroid cancer. Am Surg.
71:731–734. 2005.PubMed/NCBI
|
4
|
Zaydfudim V, Feurer ID, Griffin MR and
Phay JE: The impact of lymph node involvement on survival in
patients with papillary and follicular thyroid carcinoma. Surgery.
144:1070–1078. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vandercappellen J, Van Damme J and Struyf
S: The role of CXC chemokines and their receptors in cancer. Cancer
Lett. 267:226–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ben-Baruch A: Organ selectivity in
metastasis: Regulation by chemokines and their receptors. Clin Exp
Metastasis. 25:345–356. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun X, Cheng G, Hao M, Zheng J, Zhou X,
Zhang J, Taichman RS, Pienta KJ and Wang J: CXCL12/CXCR4/CXCR7
chemokine axis and cancer progression. Cancer Metastasis Rev.
29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hao M, Zheng J, Hou K and Wang J, Chen X,
Lu X, Bo J, Xu C, Shen K and Wang J: Role of chemokine receptor
CXCR7 in bladder cancer progression. Biochem Pharmacol. 84:204–214.
2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zheng K, Li HY, Su XL, Wang XY, Tian T, Li
F and Ren GS: Chemokine receptor CXCR7 regulates the invasion,
angiogenesis and tumor growth of human hepatocellular carcinoma
cells. J Exp Clin Cancer Res. 29:312010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Singh RK and Lokeshwar BL: The
IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling
to promote prostate cancer growth. Cancer Res. 71:3268–3277. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu Z, Sun DX, Teng XY, Xu WX, Meng XP and
Wang BS: Expression of stromal cell derived factor 1 and CXCR7 in
papillary thyroid carcinoma. Endocr Pathol. 23:247–253. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu Z, Yang L, Teng X, Zhang H and Guan H:
The involvement of CXCR7 in modulating the progression of papillary
thyroid carcinoma. J Surg Res. 191:379–388. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang H, Teng X and Liu Z, Zhang L and Liu
Z: Gene expression profile analyze the molecular mechanism of CXCR7
regulating papillary thyroid carcinoma growth and metastasis. J Exp
Clin Cancer Res. 34:162015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wyllie FS, Lemoine NR, Barton CM, Dawson
T, Bond J and Wynford-Thomas D: Direct growth stimulation of normal
human epithelial cells by mutant p53. Mol Carcinog. 7:83–88. 1993.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ross PL, Huang YN, Marchese JN, Williamson
B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, et
al: Multiplexed protein quantitation in Saccharomyces cerevisiae
using amine-reactive isobaric tagging reagents. Mol Cell
Proteomics. 3:1154–1169. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Paik JY, Ko BH, Jung KH and Lee KH:
Fibronectin stimulates endothelial cell 18F-FDG uptake through
focal adhesion kinase-mediated phosphatidylinositol 3-kinase/Akt
signaling. J Nucl Med. 50:618–624. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu XC, Zhang YH, Zhang WB, Li T, Gao H and
Wang YH: MicroRNA-133a functions as a tumor suppressor in gastric
cancer. J Biol Regul Homeost Agents. 28:615–624. 2014.PubMed/NCBI
|
18
|
Fei F, Li X, Xu L, Li D, Zhang Z, Guo X,
Yang H, Chen Z and Xing J: CD147-CD98hc complex contributes to poor
prognosis of nonsmall cell lung cancer patients through promoting
cell proliferation Via the PI3K/Akt signaling pathway. Ann Surg
Oncol. 21:4359–4368. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Suzuki A, Horiuchi A, Ashida T, Miyamoto
T, Kashima H, Nikaido T, Konishi I and Shiozawa T: Cyclin A2
confers cisplatin resistance to endometrial carcinoma cells via
up-regulation of an Akt-binding protein, periplakin. J Cell Mol
Med. 14:2305–2317. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
de Morrée A, Droog M, Grand Moursel L,
Bisschop IJ, Impagliazzo A, Frants RR, Klooster R and van der
Maarel SM: Self-regulated alternative splicing at the AHNAK locus.
FASEB J. 26:93–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Takayama T, Shiozaki H, Shibamoto S, Oka
H, Kimura Y, Tamura S, Inoue M, Monden T, Ito F and Monden M:
Beta-catenin expression in human cancers. Am J Pathol. 148:39–46.
1996.PubMed/NCBI
|
22
|
Zou Z, Anisowicz A, Hendrix MJ, Thor A,
Neveu M, Sheng S, Rafidi K, Seftor E and Sager R: Maspin, a serpin
with tumor-suppressing activity in human mammary epithelial cells.
Science. 263:526–529. 1994. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang YH, Dong YY, Wang WM, Xie XY, Wang
ZM, Chen RX, Chen J, Gao DM, Cui JF and Ren ZG: Vascular
endothelial cells facilitated HCC invasion and metastasis through
the Akt and NF-κB pathways induced by paracrine cytokines. J Exp
Clin Cancer Res. 32:512013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Prasad ML, Huang Y, Pellegata NS, de la
Chapelle A and Kloos RT: Hashimoto's thyroiditis with papillary
thyroid carcinoma (PTC)-like nuclear alterations express molecular
markers of PTC. Histopathology. 45:39–46. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang Y, Prasad M, Lemon WJ, Hampel H,
Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, et
al: Gene expression in papillary thyroid carcinoma reveals highly
consistent profiles. Proc Natl Acad Sci USA. 98:15044–15049. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Q, Zhou J, Ku XM, Chen XG, Zhang L,
Xu J, Chen GS, Li Q, Qian F, Tian R, et al: Expression of CD147 as
a significantly unfavorable prognostic factor in hepatocellular
carcinoma. Eur J Cancer Prev. 16:196–202. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu J, Hao ZW, Zhao YX, Yang XM, Tang H,
Zhang X, Song F, Sun XX, Wang B, Nan G, et al: Full-length soluble
CD147 promotes MMP-2 expression and is a potential serological
marker in detection of hepatocellular carcinoma. J Transl Med.
12:1902014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang L, Wu G, Yu L, Yuan J, Fang F, Zhai
Z, Wang F and Wang H: Inhibition of CD147 expression reduces tumor
cell invasion in human prostate cancer cell line via RNA
interference. Cancer Biol Ther. 5:608–614. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fang F and Wang L, Zhang S, Fang Q, Hao F,
Sun Y, Zhao L, Chen S, Liao H and Wang L: CD147 modulates autophagy
through the PI3K/Akt/mTOR pathway in human prostate cancer PC-3
cells. Oncol Lett. 9:1439–1443. 2015.PubMed/NCBI
|
30
|
Tan H, Ye K, Wang Z and Tang H: CD147
expression as a significant prognostic factor in differentiated
thyroid carcinoma. Transl Res. 152:143–149. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang P, Chang S, Jiang X, Su J, Dong C,
Liu X, Yuan Z, Zhang Z and Liao H: RNA interference targeting CD147
inhibits the proliferation, invasiveness, and metastatic activity
of thyroid carcinoma cells by down-regulating glycolysis. Int J
Clin Exp Pathol. 8:309–318. 2015.PubMed/NCBI
|
32
|
van den Heuvel AP, de Vries-Smits AM, van
Weeren PC, Dijkers PF, de Bruyn KM, Riedl JA and Burgering BM:
Binding of protein kinase B to the plakin family member periplakin.
J Cell Sci. 115:3957–3966. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Suzuki A, Horiuchi A, Ashida T, Miyamoto
T, Kashima H, Nikaido T, Konishi I and Shiozawa T: Cyclin A2
confers cisplatin resistance to endometrial carcinoma cells via
up-regulation of an Akt-binding protein, periplakin. J Cell Mol
Med. 14:2305–2317. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tonoike Y, Matsushita K, Tomonaga T,
Katada K, Tanaka N, Shimada H, Nakatani Y, Okamoto Y and Nomura F:
Adhesion molecule periplakin is involved in cellular movement and
attachment in pharyngeal squamous cancer cells. BMC Cell Biol.
12:412011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang M, Volpert O, Shi YH and Bouck N:
Maspin is an angiogenesis inhibitor. Nat Med. 6:196–199. 2000.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sheng S, Carey J, Seftor EA, Dias L,
Hendrix MJ and Sager R: Maspin acts at the cell membrane to inhibit
invasion and motility of mammary and prostatic cancer cells. Proc
Natl Acad Sci USA. 93:11669–11674. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cher ML, Biliran HR Jr, Bhagat S, Meng Y,
Che M, Lockett J, Abrams J, Fridman R, Zachareas M and Sheng S:
Maspin expression inhibits osteolysis, tumor growth, and
angiogenesis in a model of prostate cancer bone metastasis. Proc
Natl Acad Sci USA. 100:7847–7852. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Boltze C, Schneider-Stock R, Meyer F,
Peters B, Quednow C, Hoang-Vu C and Roessner A: Maspin in thyroid
cancer: Its relationship with p53 and clinical outcome. Oncol Rep.
10:1783–1787. 2003.PubMed/NCBI
|
39
|
Shams TM, Samaka RM and Shams ME: Maspin
protein expression: A special feature of papillary thyroid
carcinoma. J Egypt Natl Canc Inst. 18:274–280. 2006.PubMed/NCBI
|
40
|
Liotta LA and Stetler-Stevenson WG: Tumor
invasion and metastasis: An imbalance of positive and negative
regulation. Cancer Res. 51:(18 Suppl). 5054s–5059s. 1991.PubMed/NCBI
|
41
|
Kleinberg L, Holth A, Fridman E, Schwartz
I, Shih IeM and Davidson B: The diagnostic role of claudins in
serous effusions. Am J Clin Pathol. 127:928–937. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ohtani S, Terashima M, Satoh J, Soeta N,
Saze Z, Kashimura S, Ohsuka F, Hoshino Y, Kogure M and Gotoh M:
Expression of tight-junction-associated proteins in human gastric
cancer: Downregulation of claudin-4 correlates with tumor
aggressiveness and survival. Gastric Cancer. 12:43–51. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Huber O, Bierkamp C and Kemler R:
Cadherins and catenins in development. Curr Opin Cell Biol.
8:685–691. 1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Miller JR and Moon RT: Signal transduction
through beta-catenin and specification of cell fate during
embryogenesis. Genes Dev. 10:2527–2539. 1996. View Article : Google Scholar : PubMed/NCBI
|
45
|
Rho JH, Roehrl MH and Wang JY: Tissue
proteomics reveals differential and compartment-specific expression
of the homologs transgelin and transgelin-2 in lung adenocarcinoma
and its stroma. J Proteome Res. 8:5610–5618. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang Y, Ye Y, Shen D, Jiang K, Zhang H,
Sun W, Zhang J, Xu F, Cui Z and Wang S: Identification of
transgelin-2 as a biomarker of colorectal cancer by laser capture
microdissection and quantitative proteome analysis. Cancer Sci.
101:523–529. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Nohata N, Sone Y, Hanazawa T, Fuse M,
Kikkawa N, Yoshino H, Chiyomaru T, Kawakami K, Enokida H, Nakagawa
M, et al: miR-1 as a tumor suppressive microRNA targeting TAGLN2 in
head and neck squamous cell carcinoma. Oncotarget. 2:29–42. 2011.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Li AY, Yang Q and Yang K: miR-133a
mediates the hypoxia-induced apoptosis by inhibiting TAGLN2
expression in cardiac myocytes. Mol Cell Biochem. 400:173–181.
2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shtivelman E, Cohen FE and Bishop JM: A
human gene (AHNAK) encoding an unusually large protein with a
1.2-microns polyionic rod structure. Proc Natl Acad Sci USA.
89:5472–5476. 1992. View Article : Google Scholar : PubMed/NCBI
|
50
|
Komuro A, Masuda Y, Kobayashi K, Babbitt
R, Gunel M, Flavell RA and Marchesi VT: The AHNAKs are a class of
giant propeller-like proteins that associate with calcium channel
proteins of cardiomyocytes and other cells. Proc Natl Acad Sci USA.
101:4053–4058. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Marg A, Haase H, Neumann T, Kouno M and
Morano I: AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects
transverse skeletal muscle fiber stiffness. Biochem Biophys Res
Commun. 401:143–158. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Straub BK, Boda J, Kuhn C, Schnoelzer M,
Korf U, Kempf T, Spring H, Hatzfeld M and Franke WW: A novel
cell-cell junction system: The cortex adherens mosaic of lens fiber
cells. J Cell Sci. 116:4985–4995. 2003. View Article : Google Scholar : PubMed/NCBI
|