1
|
Tennant DA, Durán RV and Gottlieb E:
Targeting metabolic transformation for cancer therapy. Nat Rev
Cancer. 10:267–277. 2010. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Faergeman NJ and Knudsen J: Role of
long-chain fatty acyl-CoA esters in the regulation of metabolism
and in cell signalling. Biochem J. 323:1–12. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ellis JM, Bowman CE and Wolfgang MJ:
Metabolic and tissue-specific regulation of acyl-CoA metabolism.
PLoS One. 10:e01165872015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hunt MC, Tillander V and Alexson SE:
Regulation of peroxisomal lipid metabolism: The role of acyl-CoA
and coenzyme A metabolizing enzymes. Biochimie. 98:45–55. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
World Health Organisation, . World Cancer
Report 2014. Chapter 5.1. 2014.
|
7
|
Wen T, Gao L, Wen Z, Wu C, Tan CS, Toh WZ
and Ong CN: Exploratory investigation of plasma metabolomics in
human lung adenocarcinoma. Mol Biosyst. 9:2370–2378. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu J, Mazzone PJ, Cata JP, Kurz A, Bauer
M, Mascha EJ and Sessler DI: Serum free fatty acid biomarkers of
lung cancer. Chest. 146:670–679. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jung WY, Kim YH, Ryu YJ, Kim BH, Shin BK,
Kim A and Kim HK: Acyl-CoA thioesterase 8 is a specific protein
related to nodal metastasis and prognosis of lung adenocarcinoma.
Pathol Res Pract. 209:276–283. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41:(Database issue).
D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Stearman RS, Dwyer-Nield L, Zerbe L,
Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT,
Franklin WA, et al: Analysis of orthologous gene expression between
human pulmonary adenocarcinoma and a carcinogen-induced murine
model. Am J Pathol. 167:1763–1775. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ,
Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH and Huang CY:
Selection of DDX5 as a novel internal control for Q-RT-PCR from
microarray data using a block bootstrap re-sampling scheme. Bmc
Genomics. 8:1402007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Landi MT, Dracheva T, Rotunno M, Figueroa
JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, et
al: Gene expression signature of cigarette smoking and its role in
lung adenocarcinoma development and survival. PLoS One.
3:e16512008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Okayama H, Kohno T, Ishii Y, Shimada Y,
Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S,
et al: Identification of genes upregulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res.
72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Selamat SA, Chung BS, Girard L, Zhang W,
Zhang Y, Campan M, Siegmund KD, Koss MN, Hagen JA, Lam WL, et al:
Genome-scale analysis of DNA methylation in lung adenocarcinoma and
integration with mRNA expression. Genome Res. 22:1197–1211. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kabbout M, Garcia MM, Fujimoto J, Liu DD,
Woods D, Chow CW, Mendoza G, Momin AA, James BP, Solis L, et al:
ETS2 mediated tumor suppressive function and MET oncogene
inhibition in human non-small cell lung cancer. Clin Cancer Res.
19:3383–3395. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Győrffy B, Surowiak P, Budczies J and
Lánczky A: Online Survival Analysis Software to Assess the
Prognostic Value of Biomarkers Using Transcriptomic data in
Non-Small-Cell Lung Cancer. PLoS One. 8:e822412013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kao YR, Shih JY, Wen WC, Ko YP, Chen BM,
Chan YL, Chu YW, Yang PC, Wu CW and Roffler SR: Tumor-associated
antigen L6 and the invasion of human lung cancer cells. Clin Cancer
Res. 9:2807–2816. 2003.PubMed/NCBI
|
19
|
Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix
MJ, Wu R and Wu CW: Selection of invasive and metastatic
subpopulations from a human lung adenocarcinoma cell line. Am J
Respir Cell Mol Biol. 17:353–360. 1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kirkby B, Roman N, Kobe B, Kellie S and
Forwood JK: Functional and structural properties of mammalian
acyl-coenzyme A thioesterases. Prog Lipid Res. 49:366–377. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cohen DE: New players on the metabolic
stage: How do you like Them Acots? Adipocyte. 2:3–6. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hunt MC and Alexson SE: The role Acyl-CoA
thioesterases play in mediating intracellular lipid metabolism.
Prog Lipid Res. 41:99–130. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Y, Song X, Zhao XJ, Zou LJ and Xu GW:
Serum metabolic profiling study of lung cancer using ultra high
performance liquid chromatography/quadrupole time-of-flight mass
spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci.
966:147–153. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chang YS, Tsai CT, Huangfu CA, Huang WY,
Lei HY, Lin CF, Su IJ, Chang WT, Wu PH, Chen YT, et al: ACSL3 and
GSK-3β are essential for lipid upregulation induced by endoplasmic
reticulum stress in liver cells. J Cell Biochem. 112:881–893. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Hung YH, Chan YS, Chang YS, Lee KT, Hsu
HP, Yen MC, Chen WC, Wang CY and Lai MD: Fatty acid metabolic
enzyme acyl-CoA thioesterase 8 promotes the development of
hepatocellular carcinoma. Oncol Rep. 31:2797–2803. 2014.PubMed/NCBI
|
27
|
Pei Z, Fraisl P, Shi X, Gabrielson E,
Forss-Petter S, Berger J and Watkins PA: Very Long-Chain Acyl-CoA
Synthetase 3: Overexpression and Growth Dependence in Lung Cancer.
PLoS One. 8:e693922013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Adams SH, Chui C, Schilbach SL, Yu XX,
Goddard AD, Grimaldi JC, Lee J, Dowd P, Colman S and Lewin DA:
BFIT, a unique acyl-CoA thioesterase induced in thermogenic brown
adipose tissue: Cloning, organization of the human gene and
assessment of a potential link to obesity. Biochem J. 360:135–142.
2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Thorsell AG, Lee WH, Persson C, Siponen
MI, Nilsson M, Busam RD, Kotenyova T, Schüler H and Lehtiö L:
Comparative structural analysis of lipid binding START domains.
PLoS One. 6:e195212011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang Y, Li Y, Niepel MW, Kawano Y, Han S,
Liu S, Marsili A, Larsen PR, Lee CH and Cohen DE: Targeted deletion
of thioesterase superfamily member 1 promotes energy expenditure
and protects against obesity and insulin resistance. Proc Natl Acad
Sci USA. 109:5417–5422. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kang HW, Niepel MW, Han S, Kawano Y and
Cohen DE: Thioesterase superfamily member 2/acyl-CoA thioesterase
13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism.
FASEB J. 26:2209–2221. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wei J, Kang HW and Cohen DE: Thioesterase
superfamily member 2 (Them2)/acyl-CoA thioesterase 13 (Acot13): A
homotetrameric hotdog fold thioesterase with selectivity for
long-chain fatty acyl-CoAs. Biochem J. 421:311–322. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kang HW, Kanno K, Scapa EF and Cohen DE:
Regulatory role for phosphatidylcholine transfer protein/StarD2 in
the metabolic response to peroxisome proliferator activated
receptor alpha (PPARalpha). Biochim Biophys Acta. 1801:496–502.
2010. View Article : Google Scholar : PubMed/NCBI
|