Role of liver ICAM-1 in metastasis (Review)
- Authors:
- Aitor Benedicto
- Irene Romayor
- Beatriz Arteta
-
Affiliations: Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E‑48940 Vizcaya, Spain - Published online on: August 2, 2017 https://doi.org/10.3892/ol.2017.6700
- Pages: 3883-3892
This article is mentioned in:
Abstract
Malietzis G, Lee GH, Bernardo D, Blakemore AI, Knight SC, Moorghen M, Al-Hassi HO and Jenkins JT: The prognostic significance and relationship with body composition of CCR7-positive cells in colorectal cancer. J Surg Oncol. 112:86–92. 2015. View Article : Google Scholar : PubMed/NCBI | |
Altendorf-Hofmann A and Scheele J: A critical review of the major indicators of prognosis after resection of hepatic metastases from colorectal carcinoma. Surg Oncol Clin N Am. 12:165–192. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vidal-Vanaclocha F: The prometastatic microenvironment of the liver. Cancer Microenviron. 1:113–129. 2008. View Article : Google Scholar : PubMed/NCBI | |
Scheele J, Stangl R and Altendorf-Hofmann A: Hepatic metastases from colorectal carcinoma: Impact of surgical resection on the natural history. Br J Surg. 77:1241–1246. 1990. View Article : Google Scholar : PubMed/NCBI | |
Donadon M, Ribero D, Morris-Stiff G, Abdalla EK and Vauthey JN: New paradigm in the management of liver-only metastases from colorectal cancer. Gastrointest Cancer Res. 1:20–27. 2007.PubMed/NCBI | |
Haier J, Korb T, Hotz B, Spiegel HU and Senninger N: An intravital model to monto steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg. 7:507–514. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van den Eyden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR and Brodt P: The multifaceted role of the microenvironment in liver metastasis: Biology and clinical implications. Cancer Res. 73:2031–2043. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rose DM, Essner R, Hughes TM, Tang PC, Bilchik A, Wanek LA, Thompson JF and Morton DL: Surgical resection for metastatic melanoma to the liver: The John Wayne cancer institute and sydney melanoma unit experience. Arch Surg. 136:950–955. 2001. View Article : Google Scholar : PubMed/NCBI | |
Eichbaum MH, Kaltwasser M, Bruckner T, de Rossi TM, Schneeweiss A and Sohn C: Prognostic factors for patients with liver metastases from breast cancer. Breast Cancer Res Treat. 96:53–62. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang TX, Chua TC and Morris DL: Radioembolization and chemoembolization for unresectable neuroendocrine liver metastases-a systematic review. Surg Oncol. 21:299–308. 2012. View Article : Google Scholar : PubMed/NCBI | |
Klein CA: Cancer. The metastasis cascade. Science. 321:1785–1787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stasinopoulos I, Penet MF, Krishnamachary B and Bhujwalla ZM: Molecular and functional imaging of invasion and metastasis: Windows into the metastatic cascade. Cancer Biomark. 7:173–188. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paschos KA, Canovas D and Bird NC: The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell Signal. 21:665–674. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kawaguchi T: Organ preference of cancer metastasis and metastasis-related cell adhesion molecules including carbohydrates. Cardiovasc Hematol Disord Drug Targets. 15:164–186. 2016. View Article : Google Scholar : PubMed/NCBI | |
Francavilla C, Maddaluno L and Cavallaro U: The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol. 19:298–309. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fridman WH, Remark R, Goc J, Giraldo NA, Becht E, Hammond SA, Damotte D, Dieu-Nosjean MC and Sautès-Fridman C: The immune microenvironment: A major player in human cancers. Int Arch Allergy Immunol. 164:13–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
McDonald PC, Chafe SC and Dedhar S: Overcoming hypoxia-mediated tumor progression: Combinatorial approaches targeting pH Regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol. 4:272016. View Article : Google Scholar : PubMed/NCBI | |
Langley RR and Fidler IJ: The seed and soil hypothesis revisited-the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 128:2527–2535. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Boelte KC and Lin PC: Endothelial cell adhesion molecules and cancer progression. Curr Med Chem. 14:377–386. 2007. View Article : Google Scholar : PubMed/NCBI | |
Arabzadeh A, Chan C, Nouvion AL, Breton V, Benlolo S, DeMarte L, Turbide C, Brodt P, Ferri L and Beauchemin N: Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer. Oncogene. 32:849–860. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M, Meterissian S and Brodt P: Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol. 167:749–759. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rahn JJ, Chow JW, Horne GJ, Mah BK, Emerman JT, Hoffman P and Hugh JC: MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis. 22:475–483. 2005. View Article : Google Scholar : PubMed/NCBI | |
Laurent VM, Duperray A, Rajan Sundar V and Verdier C: Atomic force microscopy reveals a role for endothelial cell ICAM-1 expression in bladder cancer cell adherence. PLoS One. 9:e980342014. View Article : Google Scholar : PubMed/NCBI | |
Palange AL, Di Mascolo D, Carallo C, Gnasso A and Decuzzi P: Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomedicine. 10:991–1002. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clayton A, Evans RA, Pettit E, Hallett M, Williams JD and Steadman R: Cellular activation through the ligation of intercellular adhesion molecule-1. J Cell Sci. 111:443–453. 1998.PubMed/NCBI | |
Arteta B, Lasuen N, Lopategi A, Sveinbjörnsson B, Smedsrød B and Vidal-Vanaclocha F: Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific antitumor immunity through interleukin-1-induced mannose receptor in mice. Hepatology. 51:2172–2182. 2010. View Article : Google Scholar : PubMed/NCBI | |
Delfortrie S, Pinte S, Mattot V, Samson C, Villain G, Caetano B, Lauridant-Philippin G, Baranzelli MC, Bonneterre J, Trottein F, et al: Egfl7 promotes tumor escape from immunity by repressing endothelial cell activation. Cancer Res. 71:7176–7186. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ghislin S, Obino D, Middendorp S, Boggetto N, Alcaide-Loridan C and Deshayes F: LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro. BMC Cancer. 12:4552012. View Article : Google Scholar : PubMed/NCBI | |
Wang HT, Lee HI, Guo JH, Chen SH, Liao ZK, Huang KW, Torng PL and Hwang LH: Calreticulin promotes tumor lymphocyte infiltration and enhances the antitumor effects of immunotherapy by up-regulating the endothelial expression of adhesion molecules. Int J Cancer. 130:2892–2902. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akeichi T, Mocevicius P, Deduchovas O, Salnikova O, Castro-Santa E, Büchler MW, Schmidt J and Ryschich E: αL β2 integrin is indispensable for CD8+ T-cell recruitment in experimental pancreatic and hepatocellular cancer. Int J Cancer. 130:2067–2076. 2012. View Article : Google Scholar : PubMed/NCBI | |
Valcárcel M, Arteta B, Jaureguibeitia A, Lopategi A, Martínez I, Mendoza L, Muruzabal FJ, Salado C and Vidal-Vanaclocha F: Three-dimensional growth as multicellular spheroid activates the proangiogenic phenotype of colorectal carcinoma cells via LFA-1-dependent VEGF: Implications on hepatic micrometastasis. J Transl Med. 6:572008. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Jiang G, Fung JJ, Lu L and Qian S: ICAM-1 expressed on hepatic stellate cells plays an important role in immune regulation. Microsurgery. 27:328–332. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bruns T, Zimmermann HW, Pachnio A, Li KK, Trivedi PJ, Reynolds G, Hubscher S, Stamataki Z, Badenhorst PW, Weston CJ, et al: CMV infection of human sinusoidal endothelium regulates hepatic T cell recruitment and activation. J Hepatol. 63:38–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
van Den Engel NK, Heidenthal E, Vinke A, Kolb H and Martin S: Circulating forms of intercellular adhesion molecule (ICAM)-1 in mice lacking membranous ICAM-1. Blood. 95:1350–1355. 2000.PubMed/NCBI | |
Pluskota E and D'Souza SE: Fibrinogen interactions with ICAM-1 (CD54) regulate endothelial cell survival. Eur J Biochem. 267:4693–4704. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shen Q, Rahn JJ, Zhang J, Gunasekera N, Sun X, Shaw AR, Hendzel MJ, Hoffman P, Bernier A and Hugh JC: MUC1 initiates Src-CrkL-Rac1/Cdc42-mediated actin cytoskeletal protrusive motility after ligating intercellular adhesion molecule-1. Mol Cancer Res. 6:555–567. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gulubova MV: Expression of cell adhesion molecules and their beta1 and beta2 integrin ligands in human liver peliosis. Pathol Res Pract. 201:503–511. 2005. View Article : Google Scholar : PubMed/NCBI | |
Oudar O, Moreau A, Feldmann G and Scoazec JY: Expression and regulation of intercellular adhesion molecule-1 (ICAM-1) in organotypic cultures of rat liver tissue. J Hepatol. 29:901–909. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gangopadhyay A, Lazure DA and Thomas P: Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis. 16:703–712. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R and Luscinskas FW: ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood. 106:584–592. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lalor PF, Shields P, Grant A and Adams DH: Recruitment of lymphocytes to the human liver. Immunol Cell Biol. 80:52–64. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lawson C, Ainsworth M, Yacoub M and Rose M: Ligation of ICAM-1 on endothelial cells leads to expression of VCAM-1 via a nuclear factor-kappaB-independent mechanism. J Immunol. 162:2990–2996. 1999.PubMed/NCBI | |
Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N and Clavien PA: ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology. 124:692–700. 2003. View Article : Google Scholar : PubMed/NCBI | |
Witkowska AM and Borawska MH: Soluble intercellular adhesion molecule-1 (sICAM-1): An overview. Eur Cytokine Netw. 15:91–98. 2004.PubMed/NCBI | |
Sprenger A, Schardt C, Rotsch M, Zehrer M, Wolf M, Havemann K and Heymanns J: Soluble intercellular adhesion molecule-1 in patients with lung cancer and benign lung diseases. J Cancer Res Clin Oncol. 123:632–638. 1997. View Article : Google Scholar : PubMed/NCBI | |
Maruo Y, Gochi A, Kaihara A, Shimamura H, Yamada T, Tanaka N and Orita K: ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer. 100:486–490. 2002. View Article : Google Scholar : PubMed/NCBI | |
Christiansen I, Gidlof C, Kälkner KM, Hagberg H, Bennmarker H and Tötterman T: Elevated serum levels of soluble ICAM-1 in non-Hodgkin's lymphomas correlate with tumour burden, disease activity and other prognostic markers. Br J Haematol. 92:639–646. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zhu XW and Gong JP: Expression and role of icam-1 in the occurrence and development of hepatocellular carcinoma. Asian Pac J Cancer Prev. 14:1579–1583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kotteas EA, Gkiozos I, Tsagkouli S, Bastas A, Ntanos I, Saif MW and Syrigos KN: Soluble ICAM-1 levels in small-cell lung cancer: Prognostic value for survival and predictive significance for response during chemotherapy. Med Oncol. 30:6622013. View Article : Google Scholar : PubMed/NCBI | |
Gassmann P, Kang ML, Mees ST and Haier J: In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell-endothelial cell interaction. BMC Cancer. 10:1772010. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Goodrich C, Fu C and Dong C: Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα-p38-SP-1 pathway. FASEB J. 28:4591–4609. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sipos E, Chen L, András IE, Wrobel J, Zhang B, Pu H, Park M, Eum SY and Toborek M: Proinflammatory adhesion molecules facilitate polychlorinated biphenyl-mediated enhancement of brain metastasis formation. Toxicol Sci. 126:362–371. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Mi HJ, Zhu H, Zhou X and Yang H: P-selectin-mediated platelet activation promotes adhesion of non-small cell lung carcinoma cells on vascular endothelial cells under flow. Mol Med Rep. 5:935–942. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Kim KM, Kim MH, Chang HJ, Baek MK, Kim SM and Jung YD: Resveratrol inhibits tumor cell adhesion to endothelial cells by blocking ICAM-1 expression. Anticancer Res. 29:355–362. 2009.PubMed/NCBI | |
Benedicto A, Marquez J, Olaso E and Arteta B: LFA-1/ICAM-1 interaction switches on an orchestrated prometastatic microenvironmental shift during experimental liver metastasis of colon C26 cancer cells. abstract. Cancer Res. 75:B10. 2015. View Article : Google Scholar | |
Eaton KV, Yang HL, Giachelli CM and Scatena M: Engineering macrophages to control the inflammatory response and angiogenesis. Exp Cell Res. 339:300–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Steinhoff G, Behrend M, Schrader B, Duijvestijn AM and Wonigeit K: Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2 and LFA-3. Am J Pathol. 142:481–488. 1993.PubMed/NCBI | |
Kong J, Kong L, Kong J, Ke S, Gao J, Ding X, Zheng L, Sun H and Sun W: After insufficient radiofrequency ablation, tumor-associated endothelial cells exhibit enhanced angiogenesis and promote invasiveness of residual hepatocellular carcinoma. J Transl Med. 10:2302012. View Article : Google Scholar : PubMed/NCBI | |
Lee WY and Kubes P: Leukocyte adhesion in the liver: Distinct adhesion paradigm from other organs. J Hepatol. 48:504–512. 2008. View Article : Google Scholar : PubMed/NCBI | |
Salas A, Shimaoka M, Phan U, Kim M and Springer TA: Transition from rolling to firm adhesion can be mimicked by extension of integrin alphaLbeta2 in an intermediate affinity state. J Biol Chem. 281:10876–10882. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roosien FF, de Kuiper PE, de Rijk D and Roos E: Invasive and metastatic capacity of revertants of LFA-1-deficient mutant T-cell hybridomas. Cancer Res. 50:3509–3513. 1990.PubMed/NCBI | |
Tatsumi T, Shimazaki C, Goto H, Araki S, Sudo Y, Yamagata N, Ashihara E, Inaba T, Fujita N and Nakagawa M: Expression of adhesion molecules on myeloma cells. Jpn J Cancer Res. 87:837–842. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gulubova MV: Expression of cell adhesion molecules, their ligands and tumour necrosis factor alpha in the liver of patients with metastatic gastrointestinal carcinomas. Histochem J. 34:67–77. 2002. View Article : Google Scholar : PubMed/NCBI | |
Soto MS, Serres S, Anthony DC and Sibson NR: Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro-Oncol. 16:540–551. 2014. View Article : Google Scholar : PubMed/NCBI | |
Horm TM and Schroeder JA: MUC1 and metastatic cancer: Expression, function and therapeutic targeting. Cell Adh Migr. 7:187–198. 2013. View Article : Google Scholar : PubMed/NCBI | |
Williams K, Motiani K, Giridhar PV and Kasper S: CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med (Maywood). 238:324–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Olsson E, Honeth G, Bendahl PO, Saal LH, Gruvberger-Saal S, Ringnér M, Vallon-Christersson J, Jönsson G, Holm K, Lövgren K, et al: CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer. 11:4182011. View Article : Google Scholar : PubMed/NCBI | |
Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ohtani H: Pathophysiologic significance of host reactions in human cancer tissue: Desmoplasia and tumor immunity. Tohoku J Exp Med. 187:193–202. 1999. View Article : Google Scholar : PubMed/NCBI | |
Essani NA, McGuire GM, Manning AM and Jaeschke H: Differential induction of mRNA for ICAM-1 and selectins in hepatocytes, Kupffer cells and endothelial cells during endotoxemia. Biochem Biophys Res Commun. 211:74–82. 1995. View Article : Google Scholar : PubMed/NCBI | |
Usami Y, Ishida K, Sato S, Kishino M, Kiryu M, Ogawa Y, Okura M, Fukuda Y and Toyosawa S: Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 133:568–578. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohira H, Ueno T, Shakado S, Sakamoto M, Torimura T, Inuzuka S, Sata M and Tanikawa K: Cultured rat hepatic sinusoidal endothelial cells express intercellular adhesion molecule-1 (ICAM-1) by tumor necrosis factor-alpha or interleukin-1 alpha stimulation. J Hepatol. 20:729–734. 1994. View Article : Google Scholar : PubMed/NCBI | |
Tacconi C, Correale C, Gandelli A, Spinelli A, Dejana E, D'Alessio S and Danese S: Vascular endothelial growth factor C disrupts the endothelial lymphatic barrier to promote colorectal cancer invasion. Gastroenterology. 148:1438–1451. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, Quigley JP, Staflin K, Eliceiri BP, Krueger JS, et al: Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res. 140:(Suppl 1). S27–S36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Locard-Paulet M, Lim L, Veluscek G, McMahon K, Sinclair J, van Weverwijk A, Worboys JD, Yuan Y, Isacke CM and Jørgensen C: Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci Signal. 9:ra152016. View Article : Google Scholar : PubMed/NCBI | |
Skau CT, Fischer RS, Gurel P, Thiam HR, Tubbs A, Baird MA, Davidson MW, Piel M, Alushin GM, Nussenzweig A, et al: FMN2 makes perinuclear actin to protect nuclei during confined migration and promote metastasis. Cell. 167:1571–1585. 2016. View Article : Google Scholar : PubMed/NCBI | |
Freeman SA, McLeod SJ, Dukowski J, Austin P, Lee CC, Millen-Martin B, Kubes P, McCafferty DM, Gold MR and Roskelley CD: Preventing the activation or cycling of the Rap1 GTPase alters adhesion and cytoskeletal dynamics and blocks metastatic melanoma cell extravasation into the lungs. Cancer Res. 70:4590–4601. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Habtezion A, Beilhack A, Schulz S, Butcher E and Thorlacius H: Short-term homing assay reveals a critical role for lymphocyte function-associated antigen-1 in the hepatic recruitment of lymphocytes in graft-versus-host disease. J Hepatol. 44:1132–1140. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gorina R, Lyck R, Vestweber D and Engelhardt B: β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier. J Immunol. 192:324–337. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu C, Tong C, Wang M, Gao Y, Zhang Y, Lü S, Liang S, Dong C and Long M: Determining beta2-integrin and intercellular adhesion molecule 1 binding kinetics in tumor cell adhesion to leukocytes and endothelial cells by a gas-driven micropipette assay. J Biol Chem. 286:34777–34787. 2011. View Article : Google Scholar : PubMed/NCBI | |
Haddad O, Chotard-Ghodsnia R, Verdier C and Duperray A: Tumor cell/endothelial cell tight contact upregulates endothelial adhesion molecule expression mediated by NFkappaB: Differential role of the shear stress. Exp Cell Res. 316:615–626. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wong J, Johnston B, Lee SS, Bullard DC, Smith CW, Beaudet AL and Kubes P: A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest. 99:2782–2790. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ronald JA, Ionescu CV, Rogers KA and Sandig M: Differential regulation of transendothelial migration of THP-1 cells by ICAM-1/LFA-1 and VCAM-1/VLA-4. J Leukoc Biol. 70:601–609. 2001.PubMed/NCBI | |
Kubes P and Mehal WZ: Sterile inflammation in the liver. Gastroenterology. 143:1158–1172. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ramadori G, Moriconi F, Malik I and Dudas J: Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol Pharmacol. 59:(Suppl 1). S107–S117. 2008. | |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 16:3–15. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI | |
Lee UE and Friedman SL: Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI | |
Madar S, Goldstein I and Rotter V: ‘Cancer associated fibroblasts’-more than meets the eye. Trends Mol Med. 19:447–453. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hellerbrand Wang SC, Tsukamoto H, Brenner DA and Rippe RA: Expression of intracellular adhesion molecule 1 by activated hepatic stellate cells. Hepatology. 24:670–676. 1996. View Article : Google Scholar : PubMed/NCBI | |
Masamune A, Sakai Y, Kikuta K, Satoh M, Satoh A and Shimosegawa T: Activated rat pancreatic stellate cells express intercellular adhesion molecule-1 (ICAM-1) in vitro. Pancreas. 25:78–85. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kang N, Gores GJ and Shah VH: Hepatic stellate cells: Partners in crime for liver metastases? Hepatology. 54:707–713. 2011. View Article : Google Scholar : PubMed/NCBI | |
Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, Friedman SL and Vidal-Vanaclocha F: Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology. 37:674–685. 2003. View Article : Google Scholar : PubMed/NCBI | |
Muhanna N, Doron S, Wald O, Horani A, Eid A, Pappo O, Friedman SL and Safadi R: Activation of hepatic stellate cells after phagocytosis of lymphocytes: A novel pathway of fibrogenesis. Hepatology. 48:963–977. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schildberg FA, Wojtalla A, Siegmund SV, Endl E, Diehl L, Abdullah Z, Kurts C and Knolle PA: Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology. 54:262–272. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, Kuang P, Zhao B, Yin Z and Wang X: Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest. 94:182–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fisher DT, Appenheimer MM and Evans SS: The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 26:38–47. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roca H, Varsos ZS, Sud S, Craig MJ, Ying C and Pienta KJ: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem. 284:34342–34354. 2009. View Article : Google Scholar : PubMed/NCBI | |
Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A and Jaillon S: Tumor associated macrophages and neutrophils in cancer. Immunobiology. 218:1402–1410. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okada S, Shikata K, Matsuda M, Ogawa D, Usui H, Kido Y, Nagase R, Wada J, Shikata Y and Makino H: Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes. 52:2586–2593. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liou GY, Döppler H, Necela B, Edenfield B, Zhang L, Dawson DW and Storz P: Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discov. 5:52–63. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee BR, Chang SY, Hong EH, Kwon BE, Kim HM, Kim YJ, Lee J, Cho HJ, Cheon JH and Ko HJ: Elevated endoplasmic reticulum stress reinforced immunosuppression in the tumor microenvironment via myeloid-derived suppressor cells. Oncotarget. 5:12331–12345. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sander LE, Sackett SD, Dierssen U, Beraza N, Linke RP, Müller M, Blander JM, Tacke F and Trautwein C: Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med. 207:1453–1464. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Q and Doerschuk CM: The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol. 166:6877–6884. 2001. View Article : Google Scholar : PubMed/NCBI | |
Novo E, Cannito S, Zamara E, di Valfrè Bonzo L, Caligiuri A, Cravanzola C, Compagnone A, Colombatto S, Marra F, Pinzani M and Parola M: Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol. 170:1942–1953. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang X, Han C, Wang X, Xing G, Zhou L, Li G and Niu Y: Astragaloside IV suppresses collagen production of activated hepatic stellate cells via oxidative stress-mediated p38 MAPK pathway. Free Radic Biol Med. 60:168–176. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Zhang X, Yin Q, Meng A, Su S, Jing X, Li H, Guan X, Li X, Liu S and Cheng M: F-actin cytoskeleton reorganization is associated with hepatic stellate cell activation. Mol Med Rep. 9:1641–1647. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Pfeiffer GR II and Gaarde WA: Activation of SRC tyrosine kinases in response to ICAM-1 ligation in pulmonary microvascular endothelial cells. J Biol Chem. 278:47731–47743. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Drabik K, Van Wagoner NJ, Lee S, Choi C, Dong Y and Benveniste EN: ICAM-1-induced expression of proinflammatory cytokines in astrocytes: Involvement of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways. J Immunol. 165:4658–4666. 2000. View Article : Google Scholar : PubMed/NCBI | |
Blaber R, Stylianou E, Clayton A and Steadman R: Selective regulation of ICAM-1 and RANTES gene expression after ICAM-1 ligation on human renal fibroblasts. J Am Soc Nephrol. 14:116–127. 2003. View Article : Google Scholar : PubMed/NCBI | |
Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, Floege J, Gressner AM and Weiskirchen R: Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol. 46:1064–1074. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix LY and Van Marck E: Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol. 195:336–342. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schellerer VS, Langheinrich M, Hohenberger W, Croner RS, Merkel S, Rau TT, Stürzl M and Naschberger E: Tumor-associated fibroblasts isolated from colorectal cancer tissues exhibit increased ICAM-1 expression and affinity for monocytes. Oncol Rep. 31:255–261. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brackett CM, Kojouharov B, Veith J, Greene KF, Burdelya LG, Gollnick SO, Abrams SI and Gudkov AV: Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis. Proc Natl Acad Sci USA. 113:E874–E883. 2016. View Article : Google Scholar : PubMed/NCBI | |
Poczobutt JM, Nguyen TT, Hanson D, Li H, Sippel TR, Weiser-Evans MC, Gijon M, Murphy RC and Nemenoff RA: Deletion of 5-Lipoxygenase in the tumor microenvironment promotes lung cancer progression and metastasis through regulating T cell recruitment. J Immunol. 196:891–901. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zanetti M: Tapping CD4 T cells for cancer immunotherapy: The choice of personalized genomics. J Immunol. 194:2049–2056. 2015. View Article : Google Scholar : PubMed/NCBI | |
Umansky V, Blattner C, Gebhardt C and Utikal J: The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines (Basel). 4:E362016. View Article : Google Scholar : PubMed/NCBI | |
Umansky V, Blattner C, Fleming V, Hu X, Gebhardt C, Altevogt P and Utikal J: Myeloid-derived suppressor cells and tumor escape from immune surveillance. Semin Immunopathol. 39:295–305. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baay M, Brouwer A, Pauwels P, Peeters M and Lardon F: Tumor cells and tumor-associated macrophages: Secreted proteins as potential targets for therapy. Clin Dev Immunol. 2011:5651872011. View Article : Google Scholar : PubMed/NCBI | |
Ostrand-Rosenberg S and Sinha P: Myeloid-derived suppressor cells: Linking inflammation and cancer. J Immunol. 182:4499–4506. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zen K, Masuda J and Ogata J: Monocyte-derived macrophages prime peripheral T cells to undergo apoptosis by cell-cell contact via ICAM-1/LFA-1-dependent mechanism. Immunobiology. 195:323–333. 1996. View Article : Google Scholar : PubMed/NCBI | |
Makgoba MW, Sanders ME, Ginther Luce GE, Dustin ML, Springer TA, Clark EA, Mannoni P and Shaw S: ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature. 331:86–88. 1988. View Article : Google Scholar : PubMed/NCBI | |
Rabquer BJ, Hou Y, Del Galdo F, Haines GK III, Gerber ML, Jimenez SA, Seibold JR and Koch AE: The proadhesive phenotype of systemic sclerosis skin promotes myeloid cell adhesion via ICAM-1 and VCAM-1. Rheumatology (Oxford). 48:734–740. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hemmerlein B, Scherbening J, Kugler A and Radzun HJ: Expression of VCAM-1, ICAM-1, E- and P-selectin and tumour-associated macrophages in renal cell carcinoma. Histopathology. 37:78–83. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tao L, Zhang L, Peng Y, Tao M, Li L, Xiu D, Yuan C, Ma Z and Jiang B: Neutrophils assist the metastasis of circulating tumor cells in pancreatic ductal adenocarcinoma: A new hypothesis and a new predictor for distant metastasis. Medicine (Baltimore). 95:e49322016. View Article : Google Scholar : PubMed/NCBI | |
Tabariès S, Ouellet V, Hsu BE, Annis MG, Rose AA, Meunier L, Carmona E, Tam CE, Mes-Masson AM and Siegel PM: Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res. 17:452015. View Article : Google Scholar : PubMed/NCBI | |
Hirai H, Fujishita T, Kurimoto K, Miyachi H, Kitano S, Inamoto S, Itatani Y, Saitou M, Maekawa T and Taketo MM: CCR1-mediated accumulation of myeloid cells in the liver microenvironment promoting mouse colon cancer. Clin Exp Metastasis. 31:977–989. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramaiah SK and Jaeschke H: Hepatic neutrophil infiltration in the pathogenesis of alcohol-induced liver injury. Toxicol Mech Methods. 17:431–440. 2007. View Article : Google Scholar : PubMed/NCBI | |
Slattery MJ, Liang S and Dong C: Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol. 288:C831–C839. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto S, Okanoue T, Itoh Y, Nakagawa Y, Nakamura H, Morita A, Daimon Y, Sakamoto K, Yoshida N, Yoshikawa T and Kashima K: Involvement of Kupffer cells in the interaction between neutrophils and sinusoidal endothelial cells in rats. Shock. 18:152–157. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li TJ, Jiang YM, Hu YF, Huang L, Yu J, Zhao LY, Deng HJ, Mou TY, Liu H, Yang Y, et al: Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin Cancer Res. 23:1575–1585. 2016. View Article : Google Scholar : PubMed/NCBI | |
Seth R, Raymond FD and Makgoba MW: Circulating ICAM-1 isoforms: Diagnostic prospects for inflammatory and immune disorders. Lancet. 338:83–84. 1991. View Article : Google Scholar : PubMed/NCBI | |
Rothlein R, Mainolfi EA, Czajkowski M and Marlin SD: A form of circulating ICAM-1 in human serum. J Immunol. 147:3788–3793. 1991.PubMed/NCBI | |
Tesarova P, Kalousova M, Zima T, Suchanek M, Malikova I, Kvasnicka J, Duskova D, Tesar V, Vachek J, Krupickova-Kasalova Z and Malik J: Endotelial activation and flow-mediated vasodilation in young patients with breast cancer. Neoplasma. 60:690–697. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guney N, Soydinc HO, Derin D, Tas F, Camlica H, Duranyildiz D, Yasasever V and Topuz E: Serum levels of intercellular adhesion molecule ICAM-1 and E-selectin in advanced stage non-small cell lung cancer. Med Oncol. 25:194–200. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dymicka-Piekarska V, Guzinska-Ustymowicz K, Kuklinski A and Kemona H: Prognostic significance of adhesion molecules (sICAM-1, sVCAM-1) and VEGF in colorectal cancer patients. Thromb Res. 129:e47–e50. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Duckworth CA, Zhao Q, Pritchard DM, Rhodes JM and Yu LG: Increased circulation of galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin Cancer Res. 19:1693–1704. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takahara M, Nagato T, Komabayashi Y, Yoshino K, Ueda S, Kishibe K and Harabuchi Y: Soluble ICAM-1 secretion and its functional role as an autocrine growth factor in nasal NK/T cell lymphoma cells. Exp Hematol. 41:711–718. 2013. View Article : Google Scholar : PubMed/NCBI | |
Draghiciu O, Lubbers J, Nijman HW and Daemen T: Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology. 4:e9548292015. View Article : Google Scholar : PubMed/NCBI | |
Becker JC, Dummer R, Hartmann AA, Burg G and Schmidt RE: Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha. Functional consequences on cell-mediated cytotoxicity. J Immunol. 147:4398–4401. 1991.PubMed/NCBI | |
Becker JC, Termeer C, Schmidt RE and Bröcker EB: Soluble intercellular adhesion molecule-1 inhibits MHC-restricted specific T cell/tumor interaction. J Immunol. 151:7224–7232. 1993.PubMed/NCBI |