HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review)
- Authors:
- Josefa A. Rodríguez
-
Affiliations: Cancer Biology Research Group, National Cancer Institute of Colombia, 111511 Bogotá, Colombia - Published online on: August 21, 2017 https://doi.org/10.3892/ol.2017.6784
- Pages: 4415-4427
-
Copyright: © Rodríguez . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Greten FR and Karin M: Immunity, Inflammation and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Van den Boorn JG and Hartmann G: Turning tumors into vaccines: Co-opting the innate immune system. Immunity. 39:27–37. 2013. View Article : Google Scholar : PubMed/NCBI | |
Campoli M and Ferrone S: HLA antigen changes in malignant cells: Epigenetic mechanisms and biologic significance. Oncogene. 27:5869–5885. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chang CC, Campoli M and Ferrone S: Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: Current challenges and future directions. Adv Cancer Res. 93:189–234. 2005. View Article : Google Scholar : PubMed/NCBI | |
Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F and Stern PL: Natural history of HLA expression during tumour development. Immunol Today. 14:491–499. 1993. View Article : Google Scholar : PubMed/NCBI | |
Garrido F, Ruiz-Cabello F, Cabrera T, Pérez-Villar JJ, López-Botet M, Duggan-Keen M and Stern PL: Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 18:89–95. 1997. View Article : Google Scholar : PubMed/NCBI | |
Koopman LA, Corver WE, van der Slik AR, Giphart MJ and Fleuren GJ: Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med. 191:961–976. 2000. View Article : Google Scholar : PubMed/NCBI | |
Moreau P, Rousseau P, Rouas-Freiss N, Le Discorde M, Dausset J and Carosella ED: HLA-G protein processing and transport to the cell surface. Cell Mol Life Sci. 59:1460–1466. 2002. View Article : Google Scholar : PubMed/NCBI | |
Adams JL, Smothers J, Srinivasan R and Hoos A: Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 14:603–622. 2015. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan R and Wolchok JD: Tumor antigens for cancer immunotherapy: Therapeutic potential of xenogeneic DNA vaccines. J Transl Med. 2:122004. View Article : Google Scholar : PubMed/NCBI | |
Waldhauer I and Steinle A: NK cells and cancer immunosurveillance. Oncogene. 27:5932–5943. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jaeger BN and Vivier E: Natural killer cell tolerance: Control by self or self-control? Cold Spring Harb Perspect Biol. 4:pii: a007229. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pegram HJ, Andrews DM, Smyth MJ, Darcy PK and Kershaw MH: Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 89:216–224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama WM and Kim S: Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol Rev. 214:143–154. 2006. View Article : Google Scholar : PubMed/NCBI | |
Clynes RA, Towers TL, Presta LG and Ravetch JV: Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 6:443–496. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hayakawa Y and Smyth MJ: Innate immune recognition and suppression of tumors. Adv Cancer Res. 95:293–322. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, Wölfel C, Huber C and Wölfel T: The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA. 102:16013–16018. 2005. View Article : Google Scholar : PubMed/NCBI | |
Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O and Matzinger P: CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 109:5346–5354. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gotter J, Brors B, Hergenhahn M and Kyewski B: Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med. 199:155–166. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gerloni M and Zanetti M: CD4 T cells in tumor immunity. Springer Semin Immunopathol. 27:37–48. 2005. View Article : Google Scholar : PubMed/NCBI | |
Palm NW and Medzhitov R: Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 227:221–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Smith-Garvin JE, Koretzky GA and Jordan MS: T cell activation. Annu Rev Immunol. 27:591–619. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
de Coaña Pico Y, Choudhury A and Kiessling R: Checkpoint blockade for cancer therapy: Revitalizing a suppressed immune system. Trends Mol Med. 21:482–491. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carreno BM and Collins M: The B7 family of ligands and its receptors: New pathways for costimulation and inhibition of immune responses. Annu Rev Immunol. 20:29–53. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N and Honjo T: Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 291:319–322. 2001. View Article : Google Scholar : PubMed/NCBI | |
Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H and Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 270:985–988. 1995. View Article : Google Scholar : PubMed/NCBI | |
Chemnitz JM, Parry RV, Nichols KE, June CH and Riley JL: SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 173:945–954. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kirchhof MG, Chau LA, Lemke CD, Vardhana S, Darlington PJ, Márquez ME, Taylor R, Rizkalla K, Blanca I, Dustin ML and Madrenas J: Modulation of T cell activation by stomatin-like protein 2. J Immunol. 181:1927–1936. 2008. View Article : Google Scholar : PubMed/NCBI | |
Teft WA, Kirchhof MG and Madrenas J: A molecular perspective of CTLA-4 function. Annu Rev Immunol. 24:65–97. 2006. View Article : Google Scholar : PubMed/NCBI | |
Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S and Puppo F: Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol. 33:125–134. 2003. View Article : Google Scholar : PubMed/NCBI | |
Le Bouteiller P, Fons P, Herault JP, Bono F, Chabot S, Cartwright JE and Bensussan A: Soluble HLA-G and control of angiogenesis. J Reprod Immunol. 76:17–22. 2007. View Article : Google Scholar : PubMed/NCBI | |
Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O'Callaghan CA, Dunbar R, Ogg GS, Cerundolo V and Rolink A: Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol. 160:3096–3100. 1998.PubMed/NCBI | |
Rajagopalan S and Long EO: A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med. 189:1093–1100. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pankratz S, Ruck T, Meuth SG and Wiendl H: CD4(+)HLA-G(+) regulatory T cells: Molecular signature and pathophysiological relevance. Hum Immunol. 77:727–733. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Emi M and Tanabe K: Cancer immunoediting from immune surveillance to immune escape. Immunology. 121:1–14. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vesely MD, Kershaw MH, Schreiber RD and Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Monjazeb AM, Zamora AE, Grossenbacher SK, Mirsoian A, Sckisel GD and Murphy WJ: Immunoediting and antigen loss: Overcoming the achilles heel of immunotherapy with antigen non-specific therapies. Front Oncol. 3:1972013. View Article : Google Scholar : PubMed/NCBI | |
Khong HT and Restifo NP: Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol. 3:999–1005. 2002. View Article : Google Scholar : PubMed/NCBI | |
Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ and Schreiber RD: Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 450:903–907. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gunderson AJ and Coussens LM: B cells and their mediators as targets for therapy in solid tumors. Exp Cell Res. 319:1644–1649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI and Morales-Montor J: The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res. 35:1–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lippitz BE: Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol. 14:e218–e228. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J and Harlin H: Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 213:131–145. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gajewski TF, Fuertes M, Spaapen R, Zheng Y and Kline J: Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 23:286–292. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mahoney KM and Atkins MB: Prognostic and predictive markers for the new immunotherapies. Oncology (Williston Park). 28 Suppl 3:S39–S48. 2014. | |
Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, Abastado JP, Lam KP and Biswas SK: Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol. 40:2296–2307. 2010. View Article : Google Scholar : PubMed/NCBI | |
Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, et al: Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 31:860–867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, Banissi C, Galluzzi L, Kroemer G and Tartour E: Tumor-infiltrating regulatory T cells: Phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 6:147–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Petersson M, Charo J, Salazar-Onfray F, Noffz G, Mohaupt M, Qin Z, Klein G, Blankenstein T and Kiessling R: Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol. 161:2099–2105. 1998.PubMed/NCBI | |
Salazar-Onfray F, Charo J, Petersson M, Freland S, Noffz G, Qin Z, Blankenstein T, Ljunggren HG and Kiessling R: Down-regulation of the expression and function of the transporter associated with antigen processing in murine tumor cell lines expressing IL-10. J Immunol. 159:3195–3202. 1997.PubMed/NCBI | |
Chen CJ, Sung WW, Su TC, Chen MK, Wu PR, Yeh KT, Ko JL and Lee H: High expression of interleukin 10 might predict poor prognosis in early stage oral squamous cell carcinoma patients. Clin Chim Acta. 415:25–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goncalves AS, Wastowski IJ, Capeletti LR, Sacono NT, Cortez AP, Valadares MC, Silva TA and Batista AC: The clinicopathologic significance of the expression of HLA-G in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 117:361–368. 2014. View Article : Google Scholar : PubMed/NCBI | |
Levy EM, Bianchini M, Von Euw EM, Barrio MM, Bravo AI, Furman D, Domenichini E, Macagno C, Pinsky V, Zucchini C, et al: Human leukocyte antigen-E protein is overexpressed in primary human colorectal cancer. Int J Oncol. 32:633–641. 2008.PubMed/NCBI | |
Gasparoto TH, de Souza Malaspina TS, Damante JH, de Mello EF Jr, Ikoma MR, Garlet GP, Costa MR, Cavassani KA, da Silva JS and Campanelli AP: Regulatory T cells in the actinic cheilitis. J Oral Pathol Med. 43:754–760. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F and Garcia-Lora A: HLA and melanoma: Multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother. 58:1507–1515. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ferns DM, Heeren AM, Samuels S, Bleeker MC, de Gruijl TD, Kenter GG and Jordanova ES: Classical and non-classical HLA class I aberrations in primary cervical squamous- and adenocarcinomas and paired lymph node metastases. J Immunother Cancer. 4:782016. View Article : Google Scholar : PubMed/NCBI | |
Campoli M and Ferrone S: HLA antigen and NK cell activating ligand expression in malignant cells: A story of loss or acquisition. Semin Immunopathol. 33:321–334. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nilsson Lynge L, Djurisic S and Hviid TV: Controlling the immunological crosstalk during conception and pregnancy: HLA-G in reproduction. Front Immunol. 5:1982014.PubMed/NCBI | |
Cabrera T, López-Nevot MA, Gaforio JJ, Ruiz-Cabello F and Garrido F: Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother. 52:1–9. 2003.PubMed/NCBI | |
Goncalves AS, Oliveira JP, Oliveira CF, Silva TA, Mendonca EF, Wastowski IJ and Batista AC: Relevance of HLA-G, HLA-E and IL-10 expression in lip carcinogenesis. Hum Immunol. 77:785–790. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reimers MS, Engels CC, Putter H, Morreau H, Liefers GJ, van de Velde CJ and Kuppen PJ: Prognostic value of HLA class I, HLA-E, HLA-G and Tregs in rectal cancer: A retrospective cohort study. BMC Cancer. 14:4862014. View Article : Google Scholar : PubMed/NCBI | |
Rouas-Freiss N, Moreau P, Ferrone S and Carosella ED: HLA-G proteins in cancer: Do they provide tumor cells with an escape mechanism? Cancer Res. 65:10139–10144. 2005. View Article : Google Scholar : PubMed/NCBI | |
Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Dausset J and Rouas-Freiss N: HLA-G molecules: From maternal-fetal tolerance to tissue acceptance. Adv Immunol. 81:199–252. 2003. View Article : Google Scholar : PubMed/NCBI | |
LeMaoult J, Zafaranloo K, Le Danff C and Carosella ED: HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 19:662–664. 2005.PubMed/NCBI | |
Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, et al: HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 391:795–799. 1998. View Article : Google Scholar : PubMed/NCBI | |
Braud VM, Aldemir H, Breart B and Ferlin WG: Expression of CD94-NKG2A inhibitory receptor is restricted to a subset of CD8+ T cells. Trends Immunol. 24:162–164. 2003. View Article : Google Scholar : PubMed/NCBI | |
Garrido F, Cabrera T and Aptsiauri N: “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy. Int J Cancer. 127:249–256. 2010.PubMed/NCBI | |
Vermeulen CF, Jordanova ES, Zomerdijk-Nooijen YA, ter Haar NT, Peters AA and Fleuren GJ: Frequent HLA class I loss is an early event in cervical carcinogenesis. Hum Immunol. 66:1167–1173. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brady CS, Bartholomew JS, Burt DJ, Duggan-Keen MF, Glenville S, Telford N, Little AM, Davidson JA, Jimenez P, Ruiz-Cabello F, et al: Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens. 55:401–411. 2000. View Article : Google Scholar : PubMed/NCBI | |
Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-Nevot MA and Garrido F: Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics. 63:65–71. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez JA, Galeano L, Palacios DM, Gómez C, Serrano ML, Bravo MM and Combita AL: Altered HLA class I and HLA-G expression is associated with IL-10 expression in patients with cervical cancer. Pathobiology. 79:72–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P and LeMaoult J: HLA-G: An immune checkpoint molecule. Adv Immunol. 127:33–144. 2015. View Article : Google Scholar : PubMed/NCBI | |
Seliger B, Ritz U and Ferrone S: Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int J Cancer. 118:129–138. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ristich V, Liang S, Zhang W, Wu J and Horuzsko A: Tolerization of dendritic cells by HLA-G. Eur J Immunol. 35:1133–1142. 2005. View Article : Google Scholar : PubMed/NCBI | |
Caumartin J, Favier B, Daouya M, Guillard C, Moreau P, Carosella ED and LeMaoult J: Trogocytosis-based generation of suppressive NK cells. EMBO J. 26:1423–1433. 2007. View Article : Google Scholar : PubMed/NCBI | |
König L, Kasimir-Bauer S, Hoffmann O, Bittner AK, Wagner B, Manvailer LF, Schramm S, Bankfalvi A, Giebel B, Kimmig R, et al: The prognostic impact of soluble and vesicular HLA-G and its relationship to circulating tumor cells in neoadjuvant treated breast cancer patients. Hum Immunol. 77:791–799. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bainbridge DR, Ellis SA and Sargent IL: The short forms of HLA-G are unlikely to play a role in pregnancy because they are not expressed at the cell surface. J Reprod Immunol. 47:1–16. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gong FL, Feng XW and Grosse-Wilde H: Impaired antigen-presenting capability of monocytes correlated with their decreased expression of HLA-II antigens in patients with myeloid leukemia. J Tongji Med Univ. 13:65–70. 1993. View Article : Google Scholar : PubMed/NCBI | |
Yang XX, Pan HZ, Li PY, Li FX, Xu WW, Wu YS, Yao GY and Li M: HLA class II variants in Chinese breast cancer patients. Asian Pac J Cancer Prev. 12:3075–3079. 2011.PubMed/NCBI | |
Hu JM, Li L, Chen YZ, Liu C, Cui X, Yin L, Yang L, Zou H, Pang L, Zhao J, et al: HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC. Epigenetics. 9:1366–1373. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Xu A, Xie Y, Awonuga AO and Lin Z: Some but not all of HLA-II alleles are associated with cervical cancer in Chinese women. Cancer Genet Cytogenet. 187:95–100. 2008. View Article : Google Scholar : PubMed/NCBI | |
National Cancer Institute. Chemotherapy and you U.S. Department of health and human services national institutes of health. 2011. | |
Taylor A and Powell ME: Intensity-modulated radiotherapy-what is it? Cancer Imaging. 4:68–73. 2004. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al: Classification of current anticancer immunotherapies. Oncotarget. 5:12472–12508. 2014. View Article : Google Scholar : PubMed/NCBI | |
Copier J, Dalgleish AG, Britten CM, Finke LH, Gaudernack G, Gnjatic S, Kallen K, Kiessling R, Schuessler-Lenz M, Singh H, et al: Improving the efficacy of cancer immunotherapy. Eur J Cancer. 45:1424–1431. 2009. View Article : Google Scholar : PubMed/NCBI | |
Young PA, Morrison SL and Timmerman JM: Antibody-cytokine fusion proteins for treatment of cancer: Engineering cytokines for improved efficacy and safety. Semin Oncol. 41:623–636. 2014. View Article : Google Scholar : PubMed/NCBI | |
Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, et al: Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol. 23:6043–6053. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fong L and Small EJ: Anti-cytotoxic T-lymphocyte antigen-4 antibody: The first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol. 26:5275–5283. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aerts M, Benteyn D, Van Vlierberghe H, Thielemans K and Reynaert H: Current status and perspectives of immune-based therapies for hepatocellular carcinoma. World J Gastroenterol. 22:253–261. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boasberg P, Hamid O and O'Day S: Ipilimumab: Unleashing the power of the immune system through CTLA-4 blockade. Semin Oncol. 37:440–449. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ugurel S, Röhmel J, Ascierto PA, Flaherty KT, Grob JJ, Hauschild A, Larkin J, Long GV, Lorigan P, McArthur GA, et al: Survival of patients with advanced metastatic melanoma: The impact of novel therapies. Eur J Cancer. 53:125–134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thor Straten P and Garrido F: Targetless T cells in cancer immunotherapy. J Immunother Cancer. 4:232016. View Article : Google Scholar : PubMed/NCBI | |
Vavrova K, Vrabcova P, Filipp D, Bartunkova J and Horvath R: Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy. Med Oncol. 33:1362016. View Article : Google Scholar : PubMed/NCBI | |
Fesnak AD, June CH and Levine BL: Engineered T cells: The promise and challenges of cancer immunotherapy. Nat Rev Cancer. 16:566–581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Redeker A and Arens R: Improving adoptive T cell therapy: The particular role of t cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 7:3452016. View Article : Google Scholar : PubMed/NCBI | |
Del Campo AB, Aptsiauri N, Méndez R, Zinchenko S, Vales A, Paschen A, Ward S, Ruiz-Cabello F, González-Aseguinolaza G and Garrido F: Efficient recovery of HLA class I expression in human tumor cells after beta2-microglobulin gene transfer using adenoviral vector: Implications for cancer immunotherapy. Scand J Immunol. 70:125–135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Del Campo AB, Carretero J, Muñoz JA, Zinchenko S, Ruiz-Cabello F, González-Aseguinolaza G, Garrido F and Aptsiauri N: Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition. Cancer Gene Ther. 21:317–332. 2014. View Article : Google Scholar : PubMed/NCBI | |
Penaloza-MacMaster P, Kamphorst AO, Wieland A, Araki K, Iyer SS, West EE, O'Mara L, Yang S, Konieczny BT, Sharpe AH, et al: Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 211:1905–1918. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pauken KE and Wherry EJ: Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36:265–276. 2015. View Article : Google Scholar : PubMed/NCBI | |
Page DB, Postow MA, Callahan MK, Allison JP and Wolchok JD: Immune modulation in cancer with antibodies. Annu Rev Med. 65:185–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI | |
Okamoto M, Kobayashi M, Yonemitsu Y, Koido S and Homma S: Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther. 7:133–138. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu Y, Zhang Y, Shang Y and Gao Q: MDSC-decreasing chemotherapy increases the efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma and pancreatic cancer. Oncotarget. 7:4760–4769. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Ji CY, Liu GQ, Ma DX, Ding HF, Xu M and Xing J: Immunomodulatory effect of DC/CIK combined with chemotherapy in multiple myeloma and the clinical efficacy. Int J Clin Exp Pathol. 8:13146–13155. 2015.PubMed/NCBI | |
Amiot L, Ferrone S, Grosse-Wilde H and Seliger B: Biology of HLA-G in cancer: A candidate molecule for therapeutic intervention? Cell Mol Life Sci. 68:417–431. 2011. View Article : Google Scholar : PubMed/NCBI |