1
|
Belson M, Kingsley B and Holmes A: Risk
factors for acute leukemia in children: A review. Environ Health
Perspect. 115:138–145. 2007. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Ward E, DeSantis C, Robbins A, Kohler B
and Jemal A: Childhood and adolescent cancer statistics, 2014. CA
Cancer J Clin. 64:83–103. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Guo LM, Xi JS, Ma Y, Shao L, Nie CL and
Wang GJ: ARID5B gene rs10821936 polymorphism is associated with
childhood acute lymphoblastic leukemia: A meta-analysis based on
39,116 subjects. Tumour Biol. 35:709–713. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ma Y, Sui Y, Wang L and Li H: Effect of
GSTM1 null genotype on risk of childhood acute leukemia: A
meta-analysis. Tumour Biol. 35:397–402. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pekarsky Y, Zanesi N, Palamarchuk A,
Huebner K and Croce CM: FHIT: From gene discovery to cancer
treatment and prevention. Lancet Oncol. 3:748–754. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ohta M, Inoue H, Cotticelli MG, Kastury K,
Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, et al:
The FHIT gene, spanning the chromosome 3p14.2 fragile site and
renal carcinoma-associated t (3;8) breakpoint, is abnormal in
digestive tract cancers. Cell. 84:587–597. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brenner C, Bieganowski P, Pace HC and
Huebner K: The histidine triad superfamily of nucleotide-binding
proteins. J Cell Physiol. 181:179–187. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Siprashvili Z, Sozzi G, Barnes LD, McCue
P, Robinson AK, Eryomin V, Sard L, Tagliabue E, Greco A, Fusetti L,
et al: Replacement of Fhit in cancer cells suppresses
tumorigenicity. Proc Natl Acad Sci USA. 94:13771–13776. 1997.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ji L, Fang B, Yen N, Fong K, Minna JD and
Roth JA: Induction of apoptosis and inhibition of tumorigenicity
and tumor growth by adenovirus vector-mediated fragile histidine
triad (FHIT) gene overexpression. Cancer Res. 59:3333–3339.
1999.PubMed/NCBI
|
10
|
Sard L, Accornero P, Tornielli S, Delia D,
Bunone G, Campiglio M, Colombo MP, Gramegna M, Croce CM, Pierotti
MA and Sozzi G: The tumor-suppressor gene FHIT is involved in the
regulation of apoptosis and in cell cycle control. Proc Natl Acad
Sci USA. 96:8489–8492. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sevignani C, Calin GA, Cesari R, Sarti M,
Ishii H, Yendamuri S, Vecchione A, Trapasso F and Croce CM:
Restoration of fragile histidine triad (FHIT) expression induces
apoptosis and suppresses tumorigenicity in breast cancer cell
lines. Cancer Res. 63:1183–1187. 2003.PubMed/NCBI
|
12
|
Agrawal S, Unterberg M, Koschmieder S, zur
Stadt U, Brunnberg U, Verbeek W, Büchner T, Berdel WE, Serve H and
Müller-Tidow C: DNA methylation of tumor suppressor genes in
clinical remission predicts the relapse risk in acute myeloid
leukemia. Cancer Res. 67:1370–1377. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu X, Wu G, Yao X, Hou G and Jiang F: The
clinicopathological significance and ethnic difference of FHIT
hypermethylation in non-small-cell lung carcinoma: A meta-analysis
and literature review. Drug Des Devel Ther. 10:699–709.
2016.PubMed/NCBI
|
14
|
Zaki SM, Abdel-Azeez HA, El Nagar MR,
Metwally KAS and Ahmed MM: Analysis of FHIT gene methylation in
egyptian breast cancer women: Association with clinicopathological
features. Asian Pac J Cancer Prev. 16:1235–1239. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu L, Sun L, Li C, Li X, Zhang Y, Yu Y
and Xia W: Quantitative detection of methylation of FHIT and BRCA1
promoters in the serum of ductal breast cancer patients. Biomed
Mater Eng. 26 Suppl 1:S2217–S2222. 2015.PubMed/NCBI
|
16
|
Banzai C, Nishino K, Quan J, Yoshihara K,
Sekine M, Yahata T and Tanaka K: Gynecological Cancer Registry of
Niigata: Promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A
genes in cervical carcinoma. Int J Clin Oncol. 19:127–132. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang X, Li HM, Liu Z, Zhou G, Zhang Q,
Zhang T, Zhang J and Zhang C: Loss of heterozygosity and
methylation of multiple tumor suppressor genes on chromosome 3 in
hepatocellular carcinoma. J Gastroenterol. 48:132–143. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yin DT, Wang L, Sun J, Yin F, Yan Q, Shen
R, He G and Gao JX: Association of the promoter methylation and
protein expression of Fragile Histidine Triad (FHIT) gene with the
progression of differentiated thyroid carcinoma. Int J Clin Exp
Pathol. 3:482–491. 2010.PubMed/NCBI
|
19
|
Malak CA, Elghanam DM and Elbossaty WF:
FHIT gene expression in acute lymphoblastic leukemia and its
clinical significance. Asian Pac J Cancer Prev. 16:8197–8201. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Liao J, Wen S, Cao L, Zhou Y and Feng Z:
Effect of eradication of Helicobacter pylori on expression levels
of FHIT, IL-8 and P73 in gastric mucosa of first-degree relatives
of gastric cancer patients. PLoS One. 10:e01245762015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kapitanović S, Čačev T, Lončar B, Ivković
Catela T, Križanac Š and Pavelić K: Reduced FHIT expression is
associated with tumor progression in sporadic colon adenocarcinoma.
Exp Mol Pathol. 96:92–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen X, Li P, Yang Z and Mo WN: Expression
of fragile histidine triad (FHIT) and WW-domain oxidoreductase gene
(WWOX) in nasopharyngeal carcinoma. Asian Pac J Cancer Prev.
14:165–171. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Al-Temaimi RA, Jacob S, Al-Ali W, Thomas
DA and Al-Mulla F: Reduced FHIT expression is associated with
mismatch repair deficient and high CpG island methylator phenotype
colorectal cancer. J Histochem Cytochem. 61:627–638. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Sugimoto K, Yamada K, Miyagawa K, Hirai H
and Oshimi K: Decreased or altered expression of the FHIT gene in
human leukemias. Stem Cells. 15:223–228. 1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Iwai T, Yokota S, Nakao M, Nakazawa N,
Taniwaki M, Kimura T, Sonoda Y, Kaneko H, Okuda T, Azuma H, et al:
Frequent aberration of FHIT gene expression in acute leukemias.
Cancer Res. 58:5182–5187. 1998.PubMed/NCBI
|
26
|
Hallas C, Albitar M, Letofsky J, Keating
MJ, Huebner K and Croce CM: Loss of FHIT expression in acute
lymphoblastic leukemia. Clin Cancer Res. 5:2409–2414.
1999.PubMed/NCBI
|
27
|
Hashemi M, Sheybani-Nasab M, Naderi M,
Roodbari F and Taheri M: Association of functional polymorphism at
the miR-502-binding site in the 3′ untranslated region of the SETD8
gene with risk of childhood acute lymphoblastic leukemia, a
preliminary report. Tumour Biol. 35:10375–10379. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hasani SS, Hashemi M, Eskandari-Nasab E,
Naderi M, Omrani M and Sheybani-Nasab M: A functional polymorphism
in the miR-146a gene is associated with the risk of childhood acute
lymphoblastic leukemia: A preliminary report. Tumour Biol.
35:219–225. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hashemi M, Ebrahimi M, Amininia S, Naderi
M, Eskanadri-Nasab E and Taheri M: Evaluation of rs3102735 and
rs2073617 osteoprotegerin gene polymorphisms and the risk of
childhood acute lymphocytic leukemia in Zahedan Southeast Iran. Int
J Hematol Oncol Stem Cell Res. 8:39–44. 2014.PubMed/NCBI
|
30
|
Hashemi M, Moazeni-Roodi AK, Fazaeli A,
Sandoughi M, Bardestani GR, Kordi-Tamandani DM and Ghavami S: Lack
of association between paraoxonase-1 Q192R polymorphism and
rheumatoid arthritis in southeast Iran. Genet Mol Res. 9:333–339.
2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ishii H, Dumon KR, Vecchione A, Trapasso
F, Mimori K, Alder H, Mori M, Sozzi G, Baffa R, Huebner K and Croce
CM: Effect of adenoviral transduction of the fragile histidine
triad gene into esophageal cancer cells. Cancer Res. 61:1578–1584.
2001.PubMed/NCBI
|
33
|
Roz L, Gramegna M, Ishii H, Croce CM and
Sozzi G: Restoration of fragile histidine triad (FHIT) expression
induces apoptosis and suppresses tumorigenicity in lung and
cervical cancer cell lines. Proc Natl Acad Sci USA. 99:3615–3620.
2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dumon KR, Ishii H, Vecchione A, Trapasso
F, Baldassarre G, Chakrani F, Druck T, Rosato EF, Williams NN,
Baffa R, et al: Fragile histidine triad expression delays tumor
development and induces apoptosis in human pancreatic cancer.
Cancer Res. 61:4827–4836. 2001.PubMed/NCBI
|
35
|
Ghavami S, Hashemi M, Ande SR, Yeganeh B,
Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ and
Los M: Apoptosis and cancer: Mutations within caspase genes. J Med
Genet. 46:497–510. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen X, Zhang H, Li P, Yang Z, Qin L and
Mo W: Gene expression of WWOX, FHIT and p73 in acute lymphoblastic
leukemia. Oncol Lett. 6:963–969. 2013.PubMed/NCBI
|
37
|
Garcia-Manero G, Daniel J, Smith TL,
Kornblau SM, Lee MS, Kantarjian HM and Issa JP: DNA methylation of
multiple promoter-associated CpG islands in adult acute lymphocytic
leukemia. Clin Cancer Res. 8:2217–2224. 2002.PubMed/NCBI
|
38
|
Yang Y, Takeuchi S, Hofmann WK, Ikezoe T,
van Dongen JJ, Szczepański T, Bartram CR, Yoshino N, Taguchi H and
Koeffler HP: Aberrant methylation in promoter-associated CpG
islands of multiple genes in acute lymphoblastic leukemia. Leuk
Res. 30:98–102. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Garcia-Manero G, Yang H, Kuang SQ, O'Brien
S, Thomas D and Kantarjian H: Epigenetics of acute lymphocytic
leukemia. Semin Hematol. 46:24–32. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Paulsson K, An Q, Moorman AV, Parker H,
Molloy G, Davies T, Griffiths M, Ross FM, Irving J, Harrison CJ, et
al: Methylation of tumour suppressor gene promoters in the presence
and absence of transcriptional silencing in high hyperdiploid acute
lymphoblastic leukaemia. Br J Haematol. 144:838–847. 2009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Chatterton Z, Morenos L, Mechinaud F,
Ashley DM, Craig JM, Sexton-Oates A, Halemba MS, Parkinson-Bates M,
Ng J, Morrison D, et al: Epigenetic deregulation in pediatric acute
lymphoblastic leukemia. Epigenetics. 9:459–467. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Matsushita C, Yang Y, Takeuchi S,
Matsushita M, Van Dongen JJ, Szczepanski T, Bartram CR, Seo H,
Koeffler HP and Taguchi H: Aberrant methylation in
promoter-associated CpG islands of multiple genes in relapsed
childhood acute lymphoblastic leukemia. Oncol Rep. 12:97–99.
2004.PubMed/NCBI
|
43
|
Stam RW, den Boer ML, Passier MM,
Janka-Schaub GE, Sallan SE, Armstrong SA and Pieters R: Silencing
of the tumor suppressor gene FHIT is highly characteristic for MLL
gene rearranged infant acute lymphoblastic leukemia. Leukemia.
20:264–271. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Su Y, Wang X, Li J, Xu J and Xu L: The
clinicopathological significance and drug target potential of FHIT
in breast cancer, a meta-analysis and literature review. Drug Des
Devel Ther. 9:5439–5445. 2015.PubMed/NCBI
|
45
|
Xu XJ, Gao S, Wang M, Qian H, Gu GY, Zhang
K and Xu WR: Methylation status of the gene in the transformed
human mesenchymal F6 stem cell line. Oncol Lett. 9:2661–2666.
2015.PubMed/NCBI
|