1
|
Baskar R, Lee KA, Yeo R and Yeoh KW:
Cancer and radiation therapy: Current advances and future
directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Graves PR, Siddiqui F, Anscher MS and
Movsas B: Radiation pulmonary toxicity: From mechanisms to
management. Semin Radiat Oncol. 20:201–207. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sprung CN, Forrester HB, Siva S and Martin
OA: Immunological markers that predict radiation toxicity. Cancer
Lett. 368:191–197. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Marks LB, Bentzen SM, Deasy JO, Kong FM,
Bradley JD, Vogelius IS, El Naqa I, Hubbs JL, Lebesque JV,
Timmerman RD, et al: Radiation dose-volume effects in the lung. Int
J Radiat Oncol Biol Phys. 76 (3 Suppl):S70–S76. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamashita H, Nakagawa K, Nakamura N,
Koyanagi H, Tago M, Igaki H, Shiraishi K, Sasano N and Ohtomo K:
Exceptionally high incidence of symptomatic grade 2–5 radiation
pneumonitis after stereotactic radiation therapy for lung tumors.
Radiat Oncol. 2:212007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kong FM and Wang S: Nondosimetric risk
factors for radiation-induced lung toxicity. Semin Radiat Oncol.
25:100–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Togami K, Chono S and Morimoto K:
Distribution characteristics of clarithromycin and azithromycin,
macrolide antimicrobial agents used for treatment of respiratory
infections, in lung epithelial lining fluid and alveolar
macrophages. Biopharm Drug Dispos. 32:389–397. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Spagnolo P, Fabbri LM and Bush A:
Long-term macrolide treatment for chronic respiratory disease. Eur
Respir J. 42:239–251. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Southern KW, Barker PM, Solis-Moya A and
Patel L: Macrolide antibiotics for cystic fibrosis. Cochrane
Database Syst Rev. 11:CD0022032012.PubMed/NCBI
|
10
|
Wong C, Jayaram L, Karalus N, Eaton T,
Tong C, Hockey H, Milne D, Fergusson W, Tuffery C, Sexton P, et al:
Azithromycin for prevention of exacerbations in non-cystic fibrosis
bronchiectasis (EMBRACE): A randomised, double-blind,
placebo-controlled trial. Lancet. 380:660–667. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Albert RK, Connett J, Bailey WC, Casaburi
R, Cooper JA Jr, Criner GJ, Curtis JL, Dransfield MT, Han MK,
Lazarus SC, et al: Azithromycin for prevention of exacerbations of
COPD. N Engl J Med. 365:689–698. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vos R, Vanaudenaerde BM, Verleden SE, De
Vleeschauwer SI, Willems-Widyastuti A, Van Raemdonck DE, Schoonis
A, Nawrot TS, Dupont LJ and Verleden GM: A randomised controlled
trial of azithromycin to prevent chronic rejection after lung
transplantation. Eur Respir J. 37:164–172. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tamaoki J, Kadota J and Takizawa H:
Clinical implications of the immunomodulatory effects of
macrolides. Am J Med. 117 Suppl 9A:5S–11S. 2004.PubMed/NCBI
|
14
|
Giamarellos-Bourboulis EJ: Macrolides
beyond the conventional antimicrobials: A class of potent
immunomodulators. Int J Antimicrob Agents. 31:12–20. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Li DQ, Zhou N, Zhang L, Ma P and
Pflugfelder SC: Suppressive effects of azithromycin on
zymosan-induced production of proinflammatory mediators by human
corneal epithelial cells. Invest Ophthalmol Vis Sci. 51:5623–5629.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Council NR: Guide for the care and use of
laboratory animals. 8th. The National Academies Press; Washington,
DC: 2011, PubMed/NCBI
|
17
|
Hoffmann N, Lee B, Hentzer M, Rasmussen
TB, Song Z, Johansen HK, Givskov M and Høiby N: Azithromycin blocks
quorum sensing and alginate polymer formation and increases the
sensitivity to serum and stationary-growth-phase killing of
Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung
infection in Cftr(−/−) mice. Antimicrob Agents Chemother.
51:3677–3687. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Conte JE Jr, Golden J, Duncan S, McKenna
E, Lin E and Zurlinden E: Single-dose intrapulmonary
pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin,
and cefuroxime in volunteer subjects. Antimicrob Agents Chemother.
40:1617–1622. 1996.PubMed/NCBI
|
19
|
Heinzelmann F, Jendrossek V, Lauber K,
Nowak K, Eldh T, Boras R, Handrick R, Henkel M, Martin C, Uhlig S,
et al: Irradiation-induced pneumonitis mediated by the
CD95/CD95-ligand system. J Natl Cancer Inst. 98:1248–1251. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hübner RH, Gitter W, El Mokhtari NE,
Mathiak M, Both M, Bolte H, Freitag-Wolf S and Bewig B:
Standardized quantification of pulmonary fibrosis in histological
samples. Biotechniques. 44:507–517. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fleckenstein K, Gauter-Fleckenstein B,
Jackson IL, Rabbani Z, Anscher M and Vujaskovic Z: Using biological
markers to predict risk of radiation injury. Semin Radiat Oncol.
17:89–98. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kergonou JF, Bernard P, Braquet M and
Rocquet G: Effect of whole-body gamma irradiation on lipid
peroxidation in rat tissues. Biochimie. 63:555–559. 1981.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Taysi S, Uslu C, Akcay F and Sutbeyaz MY:
Malondialdehyde and nitric oxide levels in the plasma of patients
with advanced laryngeal cancer. Surg Today. 33:651–654. 2003.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kang SK, Rabbani ZN, Folz RJ, Golson ML,
Huang H, Yu D, Samulski TS, Dewhirst MW, Anscher MS and Vujaskovic
Z: Overexpression of extracellular superoxide dismutase protects
mice from radiation-induced lung injury. Int J Radiat Oncol Biol
Phys. 57:1056–1066. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Aktan B, Taysi S, Gümüştekin K, Uçüncü H,
Memişoğullari R, Save K and Bakan N: Effect of macrolide
antibiotics on nitric oxide synthase and xanthine oxidase
activities, and malondialdehyde level in erythrocyte of the guinea
pigs with experimental otitis media with effusion. Pol J Pharmacol.
55:1105–1110. 2003.PubMed/NCBI
|
27
|
Giaid A, Lehnert SM, Chehayeb B, Chehayeb
D, Kaplan I and Shenouda G: Inducible nitric oxide synthase and
nitrotyrosine in mice with radiation-induced lung damage. Am J Clin
Oncol. 26:e67–e72. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nozaki Y, Hasegawa Y, Takeuchi A, Fan ZH,
Isobe KI, Nakashima I and Shimokata K: Nitric oxide as an
inflammatory mediator of radiation pneumonitis in rats. Am J
Physiol. 272:L651–L658. 1997.PubMed/NCBI
|
29
|
Mahgoub A, El-Medany A, Mustafa A, Arafah
M and Moursi M: Azithromycin and erythromycin ameliorate the extent
of colonic damage induced by acetic acid in rats. Toxicol Appl
Pharmacol. 205:43–52. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ward PA and Hunninghake GW: Lung
inflammation and fibrosis. Am J Respir Crit Care Med.
157:S123–S129. 1998. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hong ZY, Song KH, Yoon JH, Cho J and Story
MD: An experimental model-based exploration of cytokines in
ablative radiation-induced lung injury in vivo and in vitro. Lung.
193:409–419. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rosiello RA, Merrill WW, Rockwell S,
Carter D, Cooper JA Jr, Care S and Amento EP: Radiation
pneumonitis. Bronchoalveolar lavage assessment and modulation by a
recombinant cytokine. Am Rev Respir Dis. 148:1671–1676. 1993.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kawana A, Shioya S, Katoh H, Tsuji C,
Tsuda M and Ohta Y: Expression of intercellular adhesion molecule-1
and lymphocyte function-associated antigen-1 on alveolar
macrophages in the acute stage of radiation-induced lung injury in
rats. Radiat Res. 147:431–436. 1997. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Morgan GW and Breit SN: Radiation and the
lung: A reevaluation of the mechanisms mediating pulmonary injury.
Int J Radiat Oncol Biol Phys. 31:361–369. 1995. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hong JH, Jung SM, Tsao TC, Wu CJ, Lee CY,
Chen FH, Hsu CH, McBride WH and Chiang CS: Bronchoalveolar lavage
and interstitial cells have different roles in radiation-induced
lung injury. Int J Radiat Biol. 79:159–167. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chiang CS, Liu WC, Jung SM, Chen FH, Wu
CR, McBride WH, Lee CC and Hong JH: Compartmental responses after
thoracic irradiation of mice: Strain differences. Int J Radiat
Oncol Biol Phys. 62:862–871. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yamada K, Yanagihara K, Kaku N, Harada Y,
Migiyama Y, Nagaoka K, Morinaga Y, Nakamura S, Imamura Y, Miyazaki
T, et al: Azithromycin attenuates lung inflammation in a mouse
model of ventilator-associated pneumonia by multidrug-resistant
Acinetobacter baumannii. Antimicrob Agents Chemother. 57:3883–3888.
2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kawashima M, Yatsunami J, Fukuno Y, Nagata
M, Tominaga M and Hayashi S: Inhibitory effects of 14-membered ring
macrolide antibiotics on bleomycin-induced acute lung injury. Lung.
180:73–89. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tsoutsou PG and Koukourakis MI: Radiation
pneumonitis and fibrosis: Mechanisms underlying its pathogenesis
and implications for future research. Int J Radiat Oncol Biol Phys.
66:1281–1293. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wuyts WA, Willems S, Vos R, Vanaudenaerde
BM, De Vleeschauwer SI, Rinaldi M, Vanhooren HM, Geudens N,
Verleden SE, Demedts MG, et al: Azithromycin reduces pulmonary
fibrosis in a bleomycin mouse model. Exp Lung Res. 36:602–614.
2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bosnar M, Bosnjak B, Cuzic S, Hrvacic B,
Marjanovic N, Glojnaric I, Culic O, Parnham MJ and Haber Erakovic
V: Azithromycin and clarithromycin inhibit
lipopolysaccharide-induced murine pulmonary neutrophilia mainly
through effects on macrophage-derived granulocyte-macrophage
colony-stimulating factor and interleukin-1beta. J Pharmacol Exp
Ther. 331:104–113. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Finkelstein JN, Johnston CJ, Baggs R and
Rubin P: Early alterations in extracellular matrix and transforming
growth factor beta gene expression in mouse lung indicative of late
radiation fibrosis. Int J Radiat Oncol Biol Phys. 28:621–631. 1994.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Ianaro A, Ialenti A, Maffia P, Sautebin L,
Rombolà L, Carnuccio R, Iuvone T, D'Acquisto F and Di Rosa M:
Anti-inflammatory activity of macrolide antibiotics. J Pharmacol
Exp Ther. 292:156–163. 2000.PubMed/NCBI
|
44
|
Martin M, Lefaix J and Delanian S:
TGF-beta1 and radiation fibrosis: A master switch and a specific
therapeutic target? Int J Radiat Oncol Biol Phys. 47:277–290. 2000.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Vujaskovic Z and Groen HJ: TGF-beta,
radiation-induced pulmonary injury and lung cancer. Int J Radiat
Biol. 76:511–516. 2000. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xue J, Li X, Lu Y, Gan L, Zhou L, Wang Y,
Lan J, Liu S, Sun L, Jia L, et al: Gene-modified mesenchymal stem
cells protect against radiation-induced lung injury. Mol Ther.
21:456–465. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Flechsig P, Dadrich M, Bickelhaupt S,
Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Gröne HJ, Yingling
J, et al: LY2109761 attenuates radiation-induced pulmonary murine
fibrosis via reversal of TGF-β and BMP-associated proinflammatory
and proangiogenic signals. Clin Cancer Res. 18:3616–3627. 2012.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Anscher MS, Thrasher B, Rabbani Z, Teicher
B and Vujaskovic Z: Antitransforming growth factor-beta antibody
1D11 ameliorates normal tissue damage caused by high-dose
radiation. Int J Radiat Oncol Biol Phys. 65:876–881. 2006.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen J, He B, Li Y, Wang G and Zhang W: An
experimental study on the effect of azithromycin treatment in
bleomycin-induced pulmonary fibrosis of rats. Zhonghua Nei Ke Za
Zhi. 38:677–680. 1999.(In Chinese). PubMed/NCBI
|
50
|
Westermann W, Schöbl R, Rieber EP and
Frank KH: Th2 cells as effectors in postirradiation pulmonary
damage preceding fibrosis in the rat. Int J Radiat Biol.
75:629–638. 1999. View Article : Google Scholar : PubMed/NCBI
|
51
|
Büttner C, Skupin A and Rieber EP:
Transcriptional activation of the type I collagen genes COL1A1 and
COL1A2 in fibroblasts by interleukin-4: Analysis of the functional
collagen promoter sequences. J Cell Physiol. 198:248–258. 2004.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Vos R, Vanaudenaerde BM, Verleden SE,
Ruttens D, Vaneylen A, Van Raemdonck DE, Dupont LJ and Verleden GM:
Anti-inflammatory and immunomodulatory properties of azithromycin
involved in treatment and prevention of chronic lung allograft
rejection. Transplantation. 94:101–109. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Radhakrishnan SV, Palaniyandi S, Mueller
G, Miklos S, Hager M, Spacenko E, Karlsson FJ, Huber E, Kittan NA
and Hildebrandt GC: Preventive azithromycin treatment reduces
noninfectious lung injury and acute graft-versus-host disease in a
murine model of allogeneic hematopoietic cell transplantation. Biol
Blood Marrow Transplant. 21:30–38. 2015. View Article : Google Scholar : PubMed/NCBI
|