1
|
Sharp PA: Split genes and RNA splicing.
Cell. 77:805–815. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lander ES, Linton LM, Birren B, Nusbaum C,
Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al:
Initial sequencing and analysis of the human genome. Nature.
409:860–921. 2001. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Pan Q, Shai O, Lee LJ, Frey BJ and
Blencowe BJ: Deep surveying of alternative splicing complexity in
the human transcriptome by high-throughput sequencing. Nat Genet.
40:1413–1415. 2008. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Black DL: Mechanisms of alternative
pre-messenger RNA splicing. Annu Rev Biochem. 72:291–336. 2003.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Stamm S, Ben-Ari S, Rafalska I, Tang Y,
Zhang Z, Toiber D, Thanaraj TA and Soreq H: Function of alternative
splicing. Gene. 344:1–20. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Smith CW and Valcárcel J: Alternative
pre-mRNA splicing: The logic of combinatorial control. Trends
Biochem Sci. 25:381–388. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Matlin AJ, Clark F and Smith CW:
Understanding alternative splicing: Towards a cellular code. Nat
Rev Mol Cell Biol. 6:386–398. 2005. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Kornblihtt AR, Schor IE, Alló M, Dujardin
G, Petrillo E and Muñoz MJ: Alternative splicing: A pivotal step
between eukaryotic transcription and translation. Nat Rev Mol Cell
Biol. 14:153–165. 2013. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Cáceres JF and Kornblihtt AR: Alternative
splicing: Multiple control mechanisms and involvement in human
disease. Trends Genet. 18:186–193. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Baralle D and Baralle M: Splicing in
action: Assessing disease causing sequence changes. J Med Genet.
42:737–748. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang ET, Sandberg R, Luo S, Khrebtukova I,
Zhang L, Mayr C, Kingsmore SF, Schroth GP and Burge CB: Alternative
isoform regulation in human tissue transcriptomes. Nature.
456:470–476. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Baud V and Karin M: Signal transduction by
tumor necrosis factor and its relatives. Trends Cell Biology.
11:372–377. 2001. View Article : Google Scholar
|
13
|
Zelová H and Hošek J: TNF-α signalling and
inflammation: Interactions between old acquaintances. Inflamm Res.
62:641–651. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Flicek P, Ahmed I, Amode MR, Barrell D,
Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S,
et al: Ensembl 2013. Nucleic Acids Res. 41:(Database Issue).
D48–D55. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gregory AP, Dendrou CA, Attfield KE,
Haghikia A, Xifara DK, Butter F, Poschmann G, Kaur G, Lambert L,
Leach OA, et al: TNF receptor 1 genetic risk mirrors outcome of
anti-TNF therapy in multiple sclerosis. Nature. 488:508–511. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Rittore C, Sanchez E, Soler S,
Barat-Houari M, Albers M, Obici L, McDermott MF, Touitou I and
Grandemange S: Identification of a new exon 2-skipped TNFR1
transcript: Regulation by three functional polymorphisms of the
TNFR-associated periodic syndrome (TRAPS) gene. Ann Rheum Dis.
73:290–297. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hull KM, Drewe E, Aksentijevich I, Singh
HK, Wong K, McDermott EM, Dean J, Powell RJ and Kastner DL: The TNF
receptor-associated periodic syndrome (TRAPS): Emerging concepts of
an autoinflammatory disorder. Medicine (Baltimore). 81:349–368.
2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Waschke KA, Villani AC, Vermeire S,
Dufresne L, Chen TC, Bitton A, Cohen A, Thomson AB and Wild GE:
Tumor necrosis factor receptor gene polymorphisms in crohn's
disease: Association with clinical phenotypes. Am J Gastroenterol.
100:1126–1133. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Seitz C, Muller P, Krieg RC, Mannel DN and
Hehlgans T: A novel p75TNF receptor isoform mediating NFkappa B
activation. J Biol Chem. 276:19390–19395. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Scherübl C, Schneider-Brachert W, Schütze
S, Hehlgans T and Männel DN: Colocalization of endogenous TNF with
a functional intracellular splice form of human TNF receptor type
2. J Inflamm. 2:72005. View Article : Google Scholar
|
21
|
Lainez B, Fernandez-Real JM, Romero X,
Esplugues E, Cañete JD, Ricart W and Engel P: Identification and
characterization of a novel spliced variant that encodes human
soluble tumor necrosis factor receptor 2. Int Immunol. 16:169–177.
2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fernandez-Real JM, Straczkowski M, Lainez
B, Chacón MR, Kowalska I, López-Bermejo A, García-España A,
Nikolajuk A, Kinalska I and Ricart W: An alternative spliced
variant of circulating soluble tumor necrosis factor-alpha
receptor-2 is paradoxically associated with insulin action. Eur J
Endocrinol. 154:723–730. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Esteve E, Botas P, Delgado E,
López-Bermejo A, Lainez B, Engel P, Ricart W and Fernández-Real JM:
Soluble TNF-alpha receptor 2 produced by alternative splicing is
paradoxically associated with markers of liver injury. Clin
Immunol. 123:89–94. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cañete JD, Albaladejo C, Hernández MV,
Laínez B, Pinto JA, Ramírez J, López-Armada MJ, Rodríguez-Cros JR,
Engel P, Blanco FJ and Sanmartí R: Clinical significance of high
levels of soluble tumour necrosis factor-α receptor-2 produced by
alternative splicing in rheumatoid arthritis: A longitudinal
prospective cohort study. Rheumatology (Oxford). 50:721–728. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang Y, Hu W, Feng S, Ma J and Wu M: RIP3
beta and RIP3 gamma, two novel splice variants of
receptor-interacting protein 3 (RIP3), downregulate RIP3-induced
apoptosis. Biochem Biophys Res Commun. 332:181–187. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ishizawa YH, Tamura K, Yamaguchi T,
Matsumoto K, Komiyama M, Takamatsu N, Shiba T and Ito M: Xenopus
death-domain-containing proteins FADD and RIP1 synergistically
activate JNK and NF-kappaB. Biol Cell. 98:465–478. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Brink R and Lodish HF: Tumor necrosis
factor receptor (TNFR)-associated factor 2A (TRAF2A), a TRAF2
splice variant with an extended RING finger domain that inhibits
TNFR2-mediated NF-kappaB activation. J Biol Chem. 273:4129–4134.
1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Grech A, Quinn R, Srinivasan D, Badoux X
and Brink R: Complete structural characterisation of the mammalian
and Drosophila TRAF genes: Implications for TRAF evolution and the
role of RING finger splice variants. Mol Immunol. 37:721–734. 2000.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Van Eyndhoven WG, Frank D, Kalachikov S,
Cleary AM, Hong DI, Cho E, Nasr S, Perez AJ, Mackus WJ, Cayanis E,
et al: A single gene for human TRAF-3 at chromosome 14q32.3 encodes
a variety of mRNA species by alternative polyadenylation, mRNA
splicing and transcription initiation. Mol Immunol. 35:1189–1206.
1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
van Eyndhoven WG, Gamper CJ, Cho E, Mackus
WJ and Lederman S: TRAF-3 mRNA splice-deletion variants encode
isoforms that induce NF-kappaB activation. Mol Immunol. 36:647–658.
1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gamper C, Omene CO, Van Eyndhoven WG,
Glassman GD and Lederman S: Expression and function of TRAF-3
splice-variant isoforms in human lymphoma cell lines. Hum Immunol.
62:1167–1177. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sainz J, Salas-Alvadado I, López-Fernández
E, Olmedo C, Comino A, García F, Blanco A, Gómez-Lopera S, Oyonarte
S, Bueno P and Jurado M: TNFR1 mRNA expression level and TNFR1 gene
polymorphisms are predictive markers for susceptibility to develop
invasive pulmonary aspergillosis. Int J Immunopathol Pharmacol.
23:423–436. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Heemann C, Kreuz M, Stoller I, Schoof N,
von Bonin F, Ziepert M, Löffler M, Jung W, Pfreundschuh M, Trümper
L and Kube D: Circulating levels of TNF receptor II are prognostic
for patients with peripheral T-cell Non-Hodgkin lymphoma. Clin
Cancer Res. 18:3637–3647. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hildebrandt MA, Komaki R, Liao Z, Gu J,
Chang JY, Ye Y, Lu C, Stewart DJ, Minna JD, Roth JA, et al: Genetic
variants in inflammation-related genes are associated with
radiation-induced toxicity following treatment for non-small cell
lung cancer. PLoS One. 5:e124022010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Madeleine MM, Johnson L, Malkki M, Resler
AJ, Petersdorf EW, McKnight B and Malone KE: Genetic variation in
proinflammatory cytokines IL6, IL6R, TNF-region, and TNFRSF1A and
risk of breast cancer. Breast Cancer Res Treat. 129:887–899. 2011.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Park TJ, Kim HJ, Kim JH, Bae JS, Cheong
HS, Park BL and Shin HD: Associations of CD6, TNFRSF1A and IRF8
polymorphisms with risk of inflammatory demyelinating diseases.
Neuropathol Appl Neurobiol. 39:519–530. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Matsukara H, Ikeda S, Yoshimura N, Takazoe
M and Muramatsu M: Genetic polymorphisms of tumour necrosis factor
receptor superfamily 1A and 1B affect responses to infliximab in
Japanese patients with Crohn's disease. Aliment Pharmacol Ther.
27:765–770. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cosan F, Emrence Z, Erbag G, Azakli H,
Yilmazer B, Yazici A, Ekmekci SS, Abaci N, Ustek D and Cefle A: The
association of TNFRSF1A gene and MEFV gene mutations with adult
onset Still's disease. Rheumatol Int. 33:1675–1680. 2013.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Shimada MK, Hayakawa Y, Takeda J, Gojobori
T and Imanishi T: A comprehensive survey of human polymorphisms at
conserved splice dinucleotides and its evolutionary relationship
with alternative splicing. BMC Evol Biol. 10:1222010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pagani F, Raponi M and Baralle FE:
Synonymous mutations in CFTR exon 12 affect splicing and are not
neutral in evolution. Proc Natl Acad Sci USA. 102:6368–6372. 2005.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Cariaso M and Lennon G: SNPedia: A wiki
supporting personal genome annotation, interpretation and analysis.
Nucleic Acids Res. 40:(Database Issue). D1308–D1312. 2012.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Park SJ, Kim YY, Ju JW, Han BG, Park SI
and Park BJ: Alternative splicing variants of c-FLIP transduce the
differential signal through the Raf or TRAF2 in TNF-induced cell
proliferation. Biochem Biophys Res Commun. 289:1205–1210. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Haag C, Stadel D, Zhou S, Bachem MG,
Möller P, Debatin KM and Fulda S: Identification of c-FLIP(L) and
c-FLIP(S) as critical regulators of death receptor-induced
apoptosis in pancreatic cancer cells. Gut. 60:225–237. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Krieg A, Krieg T, Wenzel M, Schmitt M,
Ramp U, Fang B, Gabbert HE, Gerharz CD and Mahotka C: TRAIL-beta
and TRAIL-gamma: Two novel splice variants of the human TNF-related
apoptosis-inducing ligand (TRAIL) without apoptotic potential. Br J
Cancer. 88:918–927. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Krieg A, Mersch S, Wolf N, Stoecklein NH,
Verde PE, Esch Am JS II, Heikaus S, Gabbert HE, Knoefel WT and
Mahotka C: Expression of TRAIL-splice variants in gastric
carcinomas: Identification of TRAIL-γ as a prognostic marker. BMC
Cancer. 13:3842013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ritter SY, Subbaiah R, Bebek G, Crish J,
Scanzello CR, Krastins B, Sarracino D, Lopez MF, Crow MK, Aigner T,
et al: Proteomic analysis of synovial fluid from the osteoarthritic
knee: Comparison with transcriptome analyses of joint tissues.
Arthritis Rheum. 65:981–992. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Nührenberg T, Langwieser N, Binder H, Kurz
T, Stratz C, Kienzle RP, Trenk D, Zohlnhöfer-Momm D and Neumann FJ:
Transcriptome analysis in patients with progressive coronary artery
disease: Identification of differential gene expression in
peripheral blood. J Cardiovasc Transl Res. 6:81–93. 2013.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Tuller T, Atar S, Ruppin E, Gurevich M and
Achiron A: Common and specific signatures of gene expression and
protein-protein interactions in autoimmune diseases. Genes Immun.
14:67–82. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Frankish A, Mudge JM, Thomas M and Harrow
J: The importance of identifying alternative splicing in vertebrate
genome annotation. Database (Oxford). 2012:bas0142012. View Article : Google Scholar : PubMed/NCBI
|