1
|
Ljungberg B, Campbell SC, Choi HY, Jacqmin
D, Lee JE, Weikert S and Kiemeney LA: The epidemiology of renal
cell carcinoma. Eur Urol. 60:615–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ridge CA, Pua BB and Madoff DC:
Epidemiology and staging of renal cell carcinoma. Semin Intervent
Radiol. 31:3–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shuch B, Ricketts CJ, Vocke CD, Komiya T,
Middelton LA, Kauffman EC, Merino MJ, Metwalli AR, Dennis P and
Linehan WM: Germline PTEN mutation Cowden syndrome: An
underappreciated form of hereditary kidney cancer. J Urol.
190:1990–1998. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chow WH, Dong LM and Devesa SS:
Epidemiology and risk factors for kidney cancer. Nat Rev Urol.
7:245–257. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ljungberg B, Cowan NC, Hanbury DC, Hora M,
Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF and Sinescu IC:
European Association of Urology Guideline Group: EAU guidelines on
renal cell carcinoma: The 2010 update. Eur Urol. 58:398–406. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Maher ER: Genomics and epigenomics of
renal cell carcinoma. Semin Cancer Biol. 23:10–17. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Linehan WM, Srinivasan R and Schmidt LS:
The genetic basis of kidney cancer: A metabolic disease. Nat Rev
Urol. 7:277–285. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bessman MJ, Frick DN and O'Handley SF: The
MutT proteins or ‘Nudix’ hydrolases, a family of versatile, widely
distributed, ‘housecleaning’ enzymes. J Biol Chem. 271:25059–25062.
1996. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ito R, Hayakawa H, Sekiguchi M and
Ishibashi T: Multiple enzyme activities of Escherichia coli MutT
protein for sanitization of DNA and RNA precursor pools.
Biochemistry. 44:6670–6674. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu W, Jones CR, Dunn CA and Bessman MJ:
Gene ytkD of Bacillus subtilis encodes an atypical nucleoside
triphosphatase member of the Nudix hydrolase superfamily. J
Bacteriol. 186:8380–8384. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fisher DI, Cartwright JL, Harashima H,
Kamiya H and McLennan AG: Characterization of a nudix hydrolase
from Deinococcus radiodurans with a marked specificity for
(deoxy)ribonucleoside 5′-diphosphates. BMC Biochem. 5:72004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Safrany ST, Caffrey JJ, Yang X, Bembenek
ME, Moyer MB, Burkhart WA and Shears SB: A novel context for the
‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol
polyphosphate phosphohydrolase. EMBO J. 17:6599–6607. 1998.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Fujikawa K, Kamiya H, Yakushiji H, Fujii
Y, Nakabeppu Y and Kasai H: The oxidized forms of dATP are
substrates for the human MutT homologue, the hMTH1 protein. J Biol
Chem. 274:18201–18205. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kamiya H, Yakushiji H, Dugué L, Tanimoto
M, Pochet S, Nakabeppu Y and Harashima H: Probing the substrate
recognition mechanism of the human MTH1 protein by nucleotide
analogs. J Mol Biol. 336:843–850. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Caffrey JJ, Safrany ST, Yang X and Shears
SB: Discovery of molecular and catalytic diversity among human
diphosphoinositol-polyphosphate phosphohydrolases. An expanding
Nudt family. J Biol Chem. 275:12730–12736. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
McLennan AG, Cartwright JL and Gasmi L:
The human NUDT family of nucleotide hydrolases. Enzymes of diverse
substrate specificity. Adv Exp Med Biol. 486:115–118. 2000.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kamiya H, Cadena-Amaro C, Dugué L,
Yakushiji H, Minakawa N, Matsuda A, Pochet S, Nakabeppu Y and
Harashima H: Recognition of nucleotide analogs containing the
7,8-dihydro-8-oxo structure by the human MTH1 protein. J Biochem.
140:843–849. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gasmi L, Cartwright JL and McLennan AG:
Cloning, expression and characterization of YSA1H, a human
adenosine 5′-diphosphosugar pyrophosphatase possessing a MutT
motif. Biochem J. 344:331–337. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang H, Slupska MM, Wei YF, Tai JH, Luther
WM, Xia YR, Shih DM, Chiang JH, Baikalov C, Fitz-Gibbon S, et al:
Cloning and characterization of a new member of the Nudix
hydrolases from human and mouse. J Biol Chem. 275:8844–8853. 2000.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang LQ, Dai DP, Gan W, Takagi Y,
Hayakawa H, Sekiguchi M and Cai JP: Lowered nudix type 5 (NUDT5)
expression leads to cell cycle retardation in HeLa cells. Mol Cell
Biochem. 363:377–384. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fujiwara S, Sawada K and Amisaki T:
Molecular dynamics study on conformational differences between dGMP
and 8-oxo-dGMP: Effects of metal ions. J Mol Graph Model.
51:158–167. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Arimori T, Tamaoki H, Nakamura T, Kamiya
H, Ikemizu S, Takagi Y, Ishibashi T, Harashima H, Sekiguchi M and
Yamagata Y: Diverse substrate recognition and hydrolysis mechanisms
of human NUDT5. Nucleic Acids Res. 39:8972–8983. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zha M, Guo Q, Zhang Y, Yu B, Ou Y, Zhong C
and Ding J: Molecular mechanism of ADP-ribose hydrolysis by human
NUDT5 from structural and kinetic studies. J Mol Biol. 379:568–578.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lavedan C, Licamele L, Volpi S, Hamilton
J, Heaton C, Mack K, Lannan R, Thompson A, Wolfgang CD and
Polymeropoulos MH: Association of the NPAS3 gene and five other
loci with response to the antipsychotic iloperidone identified in a
whole genome association study. Mol Psychiatry. 14:804–819. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lu G, Zhang J, Li Y, Li Z, Zhang N, Xu X,
Wang T, Guan Z, Gao GF and Yan J: hNUDT16: A universal decapping
enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell.
2:64–73. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li Y, Song M and Kiledjian M: Differential
utilization of decapping enzymes in mammalian mRNA decay pathways.
RNA. 17:419–428. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Trésaugues L, Lundbäck T, Welin M, Flodin
S, Nyman T, Silvander C, Gräslund S and Nordlund P: Structural
basis for the specificity of human NUDT16 and its regulation by
inosine monophosphate. PLoS One. 10:e01315072015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Abolhassani N, Iyama T, Tsuchimoto D,
Sakumi K, Ohno M, Behmanesh M and Nakabeppu Y: NUDT16 and ITPA play
a dual protective role in maintaining chromosome stability and cell
growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools
in mammals. Nucleic Acids Res. 38:2891–2903. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dallosso AR, Dolwani S, Jones N, Jones S,
Colley J, Maynard J, Idziaszczyk S, Humphreys V, Arnold J,
Donaldson A, et al: Inherited predisposition to colorectal adenomas
caused by multiple rare alleles of MUTYH but not OGG1, NUDT1, NTH1
or NEIL 1, 2 or 3. Gut. 57:1252–1255. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cho WC, Chow AS and Au JS: MiR-145
inhibits cell proliferation of human lung adenocarcinoma by
targeting EGFR and NUDT1. RNA Biol. 8:125–131. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Garre P, Briceño V, Xicola RM, Doyle BJ,
de la Hoya M, Sanz J, Llovet P, Pescador P, Puente J, Díaz-Rubio E,
et al: Analysis of the oxidative damage repair genes NUDT1, OGG1,
and MUTYH in patients from mismatch repair proficient HNPCC
families (MSS-HNPCC). Clin Cancer Res. 17:1701–1712. 2011.
View Article : Google Scholar : PubMed/NCBI
|