1
|
Kimhofer T, Fye H, Taylor-Robinson S,
Thursz M and Holmes E: Proteomic and metabonomic biomarkers for
hepatocellular carcinoma: A comprehensive review. Br J Cancer.
112:1141–1156. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Clark T, Maximin S, Meier J, Pokharel S
and Bhargava P: Hepatocellular Carcinoma: Review of epidemiology,
screening, imaging diagnosis, response assessment, and treatment.
Curr Probl Diagn Radiol. 44:479–486. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Goh GB, Chang PE and Tan CK: Changing
epidemiology of hepatocellular carcinoma in Asia. Best Pract Res
Clin Gastroenterol. 29:919–928. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ikeda K: Current therapy for
hepatocellular carcinoma. Nihon Rinsho. 68:1129–1136. 2010.(In
Japanese). PubMed/NCBI
|
5
|
Chu KK and Cheung TT: Update in management
of hepatocellular carcinoma in Eastern population. World J Hepatol.
7:1562–1571. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yang Y, Wang C, Lu Y, Bai W, An L, Qu J,
Gao X, Chen Y, Zhou L, Wu Y, et al: Outcomes of ultrasound-guided
percutaneous argon-helium cryoablation of hepatocellular carcinoma.
J Hepatobiliary Pancreat Sci. 19:674–684. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Furuta M, Kozaki K, Tanimoto K, Tanaka S,
Arii S, Shimamura T, Niida A, Miyano S and Inazawa J: The
tumor-suppressive miR-497-195 cluster targets multiple cell-cycle
regulators in hepatocellular carcinoma. PLoS One. 8:e601552013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Mizuguchi Y, Takizawa T, Yoshida H and
Uchida E: Dysregulated miRNA in progression of hepatocellular
carcinoma: A systematic review. Hepatol Res. 46:391–406. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Guaragna A, Chiaviello A, Paolella C,
D'Alonzo D and Palumbo G and Palumbo G: Synthesis and evaluation of
folate-based chlorambucil delivery systems for tumor-targeted
chemotherapy. Bioconjug Chem. 23:84–96. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Vinh NQ, Naka S, Cabral H, Murayama H,
Kaida S, Kataoka K, Morikawa S and Tani T: MRI-detectable polymeric
micelles incorporating platinum anticancer drugs enhance survival
in an advanced hepatocellular carcinoma model. Int J Nanomedicine.
10:4137–4147. 2015.PubMed/NCBI
|
11
|
Pérez-Herrero E and Fernández-Medarde A:
Advanced targeted therapies in cancer: Drug nanocarriers, the
future of chemotherapy. Eur J Pharm Biopharm. 93:52–79. 2015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Puntawee S, Theerasilp M, Reabroi S,
Saeeng R, Piyachaturawat P, Chairoungdua A and Nasongkla N:
Solubility enhancement and in vitro evaluation of PEG-b-PLA
micelles as nanocarrier of semi-synthetic andrographolide analogue
for cholangiocarcinoma chemotherapy. Pharm Dev Technol. 21:437–444.
2016.PubMed/NCBI
|
13
|
Prabaharan M: Chitosan-based nanoparticles
for tumor-targeted drug delivery. Int J Biol Macromol.
72:1313–1322. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL,
Zhan XR and Wang SL: Recent advances of chitosan nanoparticles as
drug carriers. Int J Nanomedicine. 6:765–774. 2011.PubMed/NCBI
|
15
|
Tiyaboonchai W: Chitosan nanoparticles: A
promising system for drug delivery. Naresuan Uni J: Sci Technol.
11:51–66. 2003.
|
16
|
Tian Q, Wang XH, Wang W, Zhang CN, Wang P
and Yuan Z: Self-assembly and liver targeting of sulfated chitosan
nanoparticles functionalized with glycyrrhetinic acid.
Nanomedicine. 8:870–879. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guan M, Zhou Y, Zhu QL, Liu Y, Bei YY,
Zhang XN and Zhang Q: N-trimethyl chitosan
nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer
therapy with high targeting efficacy. Nanomedicine. 8:1172–1181.
2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Richardson KE, Xue Z, Huang Y, Seo Y and
Lapitsky Y: Physicochemical and antibacterial properties of
surfactant mixtures with quaternized chitosan microgels. Carbohydr
Polym. 93:709–717. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huo M, Zhang Y, Zhou J, Zou A, Yu D, Wu Y,
Li J and Li H: Synthesis and characterization of low-toxic
amphiphilic chitosan derivatives and their application as micelle
carrier for antitumor drug. Int J Pharm. 394:162–173. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen SC, Wu YC, Mi FL, Lin YH, Yu LC and
Sung HW: A novel pH-sensitive hydrogel composed of
N,O-carboxymethyl chitosan and alginate cross-linked by genipin for
protein drug delivery. J Control Release. 96:285–300. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ma P, Liu S, Huang Y, Chen X, Zhang L and
Jing X: Lactose mediated liver-targeting effect observed by ex vivo
imaging technology. Biomaterials. 31:2646–2654. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sellimi S, Younes I, Ayed HB, Maalej H,
Montero V, Rinaudo M, Dahia M, Mechichi T, Hajji M and Nasri M:
Structural, physicochemical and antioxidant properties of sodium
alginate isolated from a Tunisian brown seaweed. Int J Biol
Macromol. 72:1358–1367. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Otter M, Kuiper J, Bos R, Rijken D and van
Berkel TJ: Characterization of the interaction both in vitro and in
vivo of tissue-type plasminogen activator (t-PA) with rat liver
cells. Biochem J. 284:545–550. 1992. View Article : Google Scholar : PubMed/NCBI
|
24
|
Puxbaum V, Nimmerfall E, Bäuerl C, Taub N,
Blaas PM, Wieser J, Mikula M, Mikulits W, Ng KM, Yeoh GC and Mach
L: M6P/IGF2R modulates the invasiveness of liver cells via its
capacity to bind mannose 6-phosphate residues. J Hepatol.
57:337–343. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bertin PA, Smith D and Nguyen ST:
High-density doxorubicin-conjugated polymeric nanoparticles via
ring-opening metathesis polymerization. Chem Commun (Camb).
14:3793–3795. 2005. View
Article : Google Scholar
|
26
|
Fontana MC, Beckenkamp A, Buffon A and
Beck RC: Controlled release of raloxifene by nanoencapsulation:
Effect on in vitro antiproliferative activity of human breast
cancer cells. Int J Nanomedicine. 9:2979–2991. 2014.PubMed/NCBI
|
27
|
Yao YC, Zhan XY, Zhang J, Zou XH, Wang ZH,
Xiong YC, Chen J and Chen GQ: A specific drug targeting system
based on polyhydroxyalkanoate granule binding protein PhaP fused
with targeted cell ligands. Biomaterials. 29:4823–4830. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Peng W, Hu C, Shu Z, Han T, Qin L and
Zheng C: Antitumor activity of tatariside F isolated from roots of
Fagopyrum tataricum (L.) Gaertn against H22 hepatocellular
carcinoma via up-regulation of p53. Phytomedicine. 22:730–736.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Van Lancker MA, Bellemans LA and De
Leenheer AP: Quantitative determination of low concentrations of
adriamycin in plasma and cell cultures, using a volatile extraction
buffer. J Chromatogr. 374:415–420. 1986. View Article : Google Scholar : PubMed/NCBI
|
30
|
Du P, Viswanathan UM, Xu Z, Ebrahimnejad
H, Hanf B, Burkholz T, Schneider M, Bernhardt I, Kirsch G and Jacob
C: Synthesis of amphiphilic seleninic acid derivatives with
considerable activity against cellular membranes and certain
pathogenic microbes. J Hazard Mater. 269:74–82. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ding J, Xiao C, Li Y, Cheng Y, Wang N, He
C, Zhuang X, Zhu X and Chen X: Efficacious hepatoma-targeted
nanomedicine self-assembled from galactopeptide and doxorubicin
driven by two-stage physical interactions. J Control Release.
169:193–203. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kato Y, Ozawa S, Miyamoto C, Maehata Y,
Suzuki A, Maeda T and Baba Y: Acidic extracellular microenvironment
and cancer. Cancer Cell Int. 13:892013. View Article : Google Scholar : PubMed/NCBI
|