1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Neville B, Damm DD, Allen C and Bouquot J:
Oral and Maxillofacial Pathology 4th edition. Elsevier Health
Sciences; Canada: pp. 409–421. 2009
|
3
|
Deng H, Sambrook PJ and Logan RM: The
treatment of oral cancer: An overview for dental professionals.
Aust Dent J. 56:244–252. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rosebush MS, Rao SK, Samant S, Gu W,
Handorf CR, Pfeffer LM and Nosrat CA: Oral cancer: Enduring
characteristics and emerging trends. J Mich Dent Assoc. 94:64–68.
2012.PubMed/NCBI
|
5
|
Warnakulasuriya S: Global epidemiology of
oral and oropharyngeal cancer. Oral Oncol. 45:309–316. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Howard JD, Lu B and Chung CH: Therapeutic
targets in head and neck squamous cell carcinoma: Identification,
evaluation, and clinical translation. Oral Oncol. 48:10–17. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Josson S, Anderson CS, Sung SY, Johnstone
PA, Kubo H, Hsieh CL, Arnold R, Gururajan M, Yates C and Chung LW:
Inhibition of ADAM9 expression induces epithelial phenotypic
alterations and sensitizes human prostate cancer cells to radiation
and chemotherapy. Prostate. 71:232–240. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Barrett A, Woessner J and Rawlings N:
Handbook of Proteolytic Enzymes. 2nd. Elsevier Inc; Europe: pp.
7152013
|
9
|
Vincent-Chong VK, Anwar A, Karen-Ng LP,
Cheong SC, Yang YH, Pradeep PJ, Rahman ZA, Ismail SM, Zaini ZM,
Prepageran N, et al: Genome wide analysis of chromosomal
alterations in oral squamous cell carcinomas revealed over
expression of MGAM and ADAM9. PLoS One. 8:e547052013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Roychaudhuri R, Hergrueter AH, Polverino
F, Laucho-Contreras ME, Gupta K, Borregaard N and Owen CA: ADAM9 is
a novel product of polymorphonuclear neutrophils: Regulation of
expression and contributions to extracellular matrix protein
degradation during acute lung injury. J Immunol. 193:2469–2482.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hooper NM and Lendeckel U: The ADAM family
of protease. Springer; The Netherlands: pp. 75–81. 2005
|
12
|
Zigrino P, Steiger J, Fox JW, Löffek S,
Schild A, Nischt R and Mauch C: Role of ADAM-9
disintegrin-cysteine-rich domains in human keratinocyte migration.
J Biol Chem. 282:30785–30793. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sung SY: ADAM9 (ADAM metallopeptidase
domain 9 (meltrin gamma)). Atlas Genet Cytogenet Oncol Haematol.
14:270–274. 2010.
|
14
|
Klein T and Bischoff R: Active
metalloproteases of the A Disintegrin and Metalloprotease (ADAM)
family: Biological function and structure. J Proteome Res.
10:17–33. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim JM, Jeung HC, Rha SY, Yu EJ, Kim TS,
Shin YK, Zhang X, Park KH, Park SW, Chung HC and Powis G: The
effect of disintegrin-metalloproteinase ADAM9 in gastric cancer
progression. Mol Cancer Ther. 13:3074–3085. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fry JL and Toker A: Secreted and
membrane-bound isoforms of protease ADAM9 have opposing effects on
breast cancer cell migration. Cancer Res. 70:8187–8198. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Fritzsche FR, Wassermann K, Jung M, Tölle
A, Kristiansen I, Lein M, Johannsen M, Dietel M, Jung K and
Kristiansen G: ADAM9 is highly expressed in renal cell cancer and
is associated with tumour progression. BMC Cancer. 8:1792008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Fritzsche FR, Jung M, Tölle A, Wild P,
Hartmann A, Wassermann K, Rabien A, Lein M, Dietel M, Pilarsky C,
et al: ADAM9 expression is a significant and independent prognostic
marker of PSA relapse in prostate cancer. Eur Urol. 54:1097–1106.
2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Singh B, Schneider M, Knyazev P and
Ullrich A: UV-induced EGFR signal transactivation is dependent on
proligand shedding by activated metalloproteases in skin cancer
cell lines. Int J Cancer. 124:531–539. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zubel A, Flechtenmacher C, Edler L and
Alonso A: Expression of ADAM9 in CIN3 lesions and squamous cell
carcinomas of the cervix. Gynecol Oncol. 114:332–336. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Shaker M, Yokoyama Y, Mori S, Tsujimoto M,
Kawaguchi N, Kiyono T, Nakano T and Matsuura N: Aberrant expression
of disintegrin-metalloprotease proteins in the formation and
progression of uterine cervical cancer. Pathobiology. 78:149–161.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tao K, Qian N, Tang Y, Ti Z, Song W, Cao D
and Dou K: Increased expression of a disintegrin and
metalloprotease-9 in hepatocellular carcinoma: Implications for
tumor progression and prognosis. Jpn J Clin Oncol. 40:645–651.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang J, Qi J, Chen N, Fu W, Zhou B and He
A: High expression of a disintegrin and metalloproteinase-9
predicts a shortened survival time in completely resected stage I
non-small cell lung cancer. Oncol Lett. 5:1461–1466.
2013.PubMed/NCBI
|
24
|
Li J, Ji Z, Qiao C, Qi Y and Shi W:
Overexpression of ADAM9 promotes colon cancer cells invasion. J
Invest Surg. 26:127–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu R, Gu J, Jiang P, Zheng Y, Liu X,
Jiang X, Huang E, Xiong S, Xu F, Liu G, et al: DNMT1-microRNA126
epigenetic circuit contributes to esophageal squamous cell
carcinoma growth via ADAM9-EGFR-AKT signaling. Clin Cancer Res.
21:854–863. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Stokes A, Joutsa J, Ala-Aho R, Pitchers M,
Pennington CJ, Martin C, Premachandra DJ, Okada Y, Peltonen J,
Grénman R, et al: Expression profiles and clinical correlations of
degradome components in the tumor microenvironment of head and neck
squamous cell carcinoma. Clin Cancer Res. 16:2022–2035. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Ambatipudi S, Gerstung M, Gowda R, Pai P,
Borges AM, Schäffer AA, Beerenwinkel N and Mahimkar MB: Genomic
profiling of advanced-stage oral cancers reveals chromosome 11q
alterations as markers of poor clinical outcome. PLoS One.
6:e172502011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Uehara E, Shiiba M, Shinozuka K, Saito K,
Kouzu Y, Koike H, Kasamatsu A, Sakamoto Y, Ogawara K, Uzawa K and
Tanzawa H: Upregulated expression of ADAM12 is associated with
progression of oral squamous cell carcinoma. Int J Oncol.
40:1414–1422. 2012.PubMed/NCBI
|
29
|
Sobin LH, Gospodarowicz MK and Wittekind
C: TNM classification of malignant tumours. Blackwell Publishing
Ltd; United Kingdom: pp. 5–29. 2009
|
30
|
Iamaroon A and Krisanaprakornkit S:
Overexpression and activation of Akt2 protein in oral squamous cell
carcinoma. Oral Oncol. 45:e175–e179. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pirker R, Pereira JR, von Pawel J,
Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE,
Paz-Ares L, Störkel S, et al: EGFR expression as a predictor of
survival for first-line chemotherapy plus cetuximab in patients
with advanced non-small-cell lung cancer: Analysis of data from the
phase 3 FLEX study. Lancet Oncol. 13:33–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kohga K, Takehara T, Tatsumi T, Ishida H,
Miyagi T, Hosui A and Hayashi N: Sorafenib inhibits the shedding of
major histocompatibility complex class I-related chain A on
hepatocellular carcinoma cells by down-regulating a disintegrin and
metalloproteinase 9. Hepatology. 51:1264–1273. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chotjumlong P, Bolscher JG, Nazmi K,
Reutrakul V, Supanchart C, Buranaphatthana W and Krisanaprakornkit
S: Involvement of the P2×7 purinergic receptor and c-Jun N-terminal
and extracellular signal-regulated kinases in cyclooxygenase-2 and
prostaglandin E2 induction by LL-37. J Innate Immun. 5:72–83. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Izumi Y, Hirata M, Hasuwa H, Iwamoto R,
Umata T, Miyado K, Tamai Y, Kurisaki T, Sehara-Fujisawa A, Ohno S
and Mekada E: A metalloprotease-disintegrin,
MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced
ectodomain shedding of membrane-anchored heparin-binding EGF-like
growth factor. EMBO J. 17:7260–7272. 1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Peduto L, Reuter VE, Shaffer DR, Scher HI
and Blobel CP: Critical function for ADAM9 in mouse prostate
cancer. Cancer Res. 65:9312–9319. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Rde C Lindenblatt, Martinez GL, Silva LE,
Faria PS, Camisasca DR and Lourenço Sde Q: Oral squamous cell
carcinoma grading systems-analysis of the best survival predictor.
J Oral Pathol Med. 41:34–39. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Peduto L: ADAM9 as a potential target
molecule in cancer. Curr Pharm Des. 15:2282–2287. 2009. View Article : Google Scholar : PubMed/NCBI
|