Targeting microRNA/UHRF1 pathways as a novel strategy for cancer therapy (Review)
- Authors:
- Hani Choudhry
- Mazin A. Zamzami
- Ziad Omran
- Wei Wu
- Marc Mousli
- Christian Bronner
- Mahmoud Alhosin
-
Affiliations: Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia, College of Pharmacy, Umm Al‑Qura University, Makkah 21955, Saudi Arabia, Department of Medicine, University of California, San Francisco, CA 94143, USA, Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch Cedex, France, Institute of Genetics and Molecular and Cellular Biology (IGBMC), National Institute of Health and Medical Research U964, National Center for Scientific Research UMR7104, University of Strasbourg, 67404 Illkirch Cedex, France - Published online on: October 30, 2017 https://doi.org/10.3892/ol.2017.7290
- Pages: 3-10
-
Copyright: © Choudhry et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Unoki M, Nishidate T and Nakamura Y: ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 23:7601–7610. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Chen L, Chen Y, Xu SG, Di GH, Yin WJ, Wu J and Shao ZM: UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Res Treat. 123:359–373. 2010. View Article : Google Scholar : PubMed/NCBI | |
Achour M, Jacq X, Rondé P, Alhosin M, Charlot C, Chataigneau T, Jeanblanc M, Macaluso M, Giordano A, Hughes AD, et al: The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene. 27:2187–2197. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bronner C, Achour M, Arima Y, Chataigneau T, Saya H and Schini-Kerth VB: The UHRF family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther. 115:419–434. 2007. View Article : Google Scholar : PubMed/NCBI | |
Berkyurek AC, Suetake I, Arita K, Takeshita K, Nakagawa A, Shirakawa M and Tajima S: The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. J Biol Chemistry. 289:379–386. 2014. View Article : Google Scholar | |
Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M and Bronner C: Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. J Exp Clin Cancer Res. 35:1742016. View Article : Google Scholar : PubMed/NCBI | |
Bronner C, Krifa M and Mousli M: Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol. 86:1643–1649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alhosin M, Sharif T, Mousli M, Etienne-Selloum N, Fuhrmann G, Schini-Kerth VB and Bronner C: Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J Exp Clin Cancer Res. 30:412011. View Article : Google Scholar : PubMed/NCBI | |
Bronner C, Chataigneau T, Schini-Kerth VB and Landry Y: The ‘Epigenetic Code Replication Machinery’, ECREM: A promising drugable target of the epigenetic cell memory. Curr Med Chemistry. 14:2629–2641. 2007. View Article : Google Scholar | |
Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J, Koseki H and Wong J: UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun. 4:15632013. View Article : Google Scholar : PubMed/NCBI | |
Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, Xue S, Duan S, Allali-Hassani A, Zuo X, et al: Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem. 286:24300–24311. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karagianni P, Amazit L, Qin J and Wong J: ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol. 28:705–717. 2008. View Article : Google Scholar : PubMed/NCBI | |
Papait R, Pistore C, Grazini U, Babbio F, Cogliati S, Pecoraro D, Brino L, Morand AL, Dechampesme AM, Spada F, et al: The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin. Mol Biol Cell. 19:3554–3563. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jenkins Y, Markovtsov V, Lang W, Sharma P, Pearsall D, Warner J, Franci C, Huang B, Huang J, Yam GC, et al: Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell. 16:5621–5629. 2005. View Article : Google Scholar : PubMed/NCBI | |
Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R, Di Fiore PP and Bonapace IM: Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol. 24:2526–2535. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J and Gu W: Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 416:648–653. 2002. View Article : Google Scholar : PubMed/NCBI | |
Qin W, Leonhardt H and Spada F: Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J Cell Biochem. 112:439–444. 2011. View Article : Google Scholar : PubMed/NCBI | |
Felle M, Joppien S, Németh A, Diermeier S, Thalhammer V, Dobner T, Kremmer E, Kappler R and Längst G: The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 39:8355–8365. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Chen H, Guo X, Wang Z, Sowa ME, Zheng L, Hu S, Zeng P, Guo R, Diao J, et al: M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci USA. 109:pp. 4828–4833. 2012; View Article : Google Scholar : PubMed/NCBI | |
Arita K, Ariyoshi M, Tochio H, Nakamura Y and Shirakawa M: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 455:818–821. 2008. View Article : Google Scholar : PubMed/NCBI | |
Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, Arrowsmith CH and Dhe-Paganon S: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 455:822–825. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bostick M, Kim JK, Estève PO, Clark A, Pradhan S and Jacobsen SE: UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 317:1760–1764. 2007. View Article : Google Scholar : PubMed/NCBI | |
Unoki M, Brunet J and Mousli M: Drug discovery targeting epigenetic codes: The great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem Pharmacol. 78:1279–1288. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hervouet E, Lalier L, Debien E, Cheray M, Geairon A, Rogniaux H, Loussouarn D, Martin SA, Vallette FM and Cartron PF: Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells. PLoS One. 5:e113332010. View Article : Google Scholar : PubMed/NCBI | |
Pacaud R, Brocard E, Lalier L, Hervouet E, Vallette FM and Cartron PF: The DNMT1/PCNA/UHRF1 disruption induces tumorigenesis characterized by similar genetic and epigenetic signatures. Sci Reports. 4:42302014. View Article : Google Scholar | |
Ge TT, Yang M, Chen Z, Lou G and Gu T: UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells. J Ovarian Res. 9:422016. View Article : Google Scholar : PubMed/NCBI | |
Wan X, Yang S, Huang W, Wu D, Chen H, Wu M, Li J, Li T and Li Y: UHRF1 overexpression is involved in cell proliferation and biochemical recurrence in prostate cancer after radical prostatectomy. J Exp Clin Cancer Res. 35:342016. View Article : Google Scholar : PubMed/NCBI | |
Abu-Alainin W, Gana T, Liloglou T, Olayanju A, Barrera LN, Ferguson R, Campbell F, Andrews T, Goldring C, Kitteringham N, et al: UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. J Pathology. 238:423–433. 2016. View Article : Google Scholar | |
UHRF1 is an oncogene that promotes DNA hypomethylation. Cancer Discov. 4:OF92014. View Article : Google Scholar | |
Guan D, Factor D, Liu Y, Wang Z and Kao HY: The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene. 32:3819–3828. 2013. View Article : Google Scholar : PubMed/NCBI | |
Babbio F, Pistore C, Curti L, Castiglioni I, Kunderfranco P, Brino L, Oudet P, Seiler R, Thalman GN, Roggero E, et al: The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene. 31:4878–4887. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Shang Y, Jin Z, Zhang W, Lv C, Zhao X, Liu Y, Li N and Liang J: UHRF1 promotes proliferation of gastric cancer via mediating tumor suppressor gene hypermethylation. Cancer Biol Ther. 16:1241–1251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Davison J, Du L, Storer B, Stirewalt DL, Heimfeld S, Estey E, Appelbaum FR and Fang M: Identification of differentially methylated markers among cytogenetic risk groups of acute myeloid leukemia. Epigenetics. 10:526–535. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Shim JW, Eum DY, Kim SD, Choi SH, Yang K, Heo K and Park MT: Downregulation of UHRF1 increases tumor malignancy by activating the CXCR4/AKT-JNK/IL-6/Snail signaling axis in hepatocellular carcinoma cells. Sci Rep. 7:27982017. View Article : Google Scholar : PubMed/NCBI | |
Jung YD, Shim JW, Park SJ, Choi SH, Yang K, Heo K and Park MT: Downregulation of UHRF1 promotes EMT via inducing CXCR4 in human cancer cells. Int J Oncol. 46:1232–1242. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ashraf W, Ibrahim A, Alhosin M, Zaayter L, Ouararhni K, Papin C, Ahmad T, Hamiche A, Mély Y, Bronner C and Mousli M: The epigenetic integrator UHRF1: On the road to become a universal biomarker for cancer. Oncotarget. 8:51946–51962. 2017.PubMed/NCBI | |
Cui L, Chen J, Zhang Q, Wang X, Qu J, Zhang J and Dang S: Up-regulation of UHRF1 by oncogenic Ras promoted the growth, migration, and metastasis of pancreatic cancer cells. Mol Cell Biochem. 400:223–232. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qin L, Dong Z and Zhang JT: Reversible epigenetic regulation of 14-3-3sigma expression in acquired gemcitabine resistance by uhrf1 and DNA methyltransferase 1. Mol Pharmacol. 86:561–569. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Yang YZ, Shi CZ, Zhang P, Moyer MP, Zhang HZ, Zou Y and Qin HL: UHRF1 promotes cell growth and metastasis through repression of p16(ink(4)a) in colorectal cancer. Ann Surg Oncol. 19:2753–2762. 2012. View Article : Google Scholar : PubMed/NCBI | |
Achour M, Mousli M, Alhosin M, Ibrahim A, Peluso J, Muller CD, Schini-Kerth VB, Hamiche A, Dhe-Paganon S and Bronner C: Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Biochem Biophys Res Commun. 430:208–212. 2013. View Article : Google Scholar : PubMed/NCBI | |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choudhry H, Harris AL and McIntyre A: The tumour hypoxia induced non-coding transcriptome. Mol Aspects Med. 47–48. 1–53. 2016.PubMed/NCBI | |
Choudhry H and Mole DR: Hypoxic regulation of the noncoding genome and NEAT1. Brief Funct Genomics. 15:174–185. 2016. View Article : Google Scholar : PubMed/NCBI | |
Josse C and Bours V: MicroRNAs and inflammation in colorectal cancer. Adv Exp Med Biol. 937:53–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vicente R, Noël D, Pers YM, Apparailly F and Jorgensen C: Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat Rev Rheumatol. 12:4962016. View Article : Google Scholar : PubMed/NCBI | |
Guedes JR, Santana I, Cunha C, Duro D, Almeida MR, Cardoso AM, de Lima MC and Cardoso AL: MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer's disease. Alzheimers Dement (Amst). 3:7–17. 2015.PubMed/NCBI | |
Irmak-Yazicioglu MB: Mechanisms of MicroRNA Deregulation and MicroRNA Targets in Gastric Cancer. Oncol Res Treat. 39:136–139. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lujambio A and Lowe SW: The microcosmos of cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ruan X, Zuo Q, Jia H, Chau J, Lin J, Ao J, Xia X, Liu H, Habib SL, Fu C and Li B: P53 deficiency-induced Smad1 upregulation suppresses tumorigenesis and causes chemoresistance in colorectal cancers. J Mol Cell Biol. 7:105–118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G and Calin GA: microRNA therapeutics in cancer-an emerging concept. EBioMedicine. 12:34–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li G, Yang F, Gu S, Li Z and Xue M: MicroRNA-101 induces apoptosis in cisplatin-resistant gastric cancer cells by targeting VEGF-C. Mol Med Rep. 13:572–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hayes J, Peruzzi PP and Lawler S: MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Wang Z, Li S, Chen J, Zhang J, Jiang C, Zhao Z, Li J, Li Y and Li X: Combinatorial epigenetic regulation of non-coding RNAs has profound effects on oncogenic pathways in breast cancer subtypes. Brief Bioinform. Oct 14–2016.(Epub ahead of print). View Article : Google Scholar | |
Kaur S, Lotsari-Salomaa JE, Seppänen-Kaijansinkko R and Peltomäki P: MicroRNA Methylation in Colorectal Cancer. Adv Exp Med Biol. 937:109–122. 2016. View Article : Google Scholar : PubMed/NCBI | |
Voorhoeve PM: MicroRNAs: Oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim Biophys Acta. 1805:72–86. 2010.PubMed/NCBI | |
Zhou X, Wang X, Huang Z, Wang J, Zhu W, Shu Y and Liu P: Prognostic value of miR-21 in various cancers: An updating meta-analysis. PLoS One. 9:e1024132014. View Article : Google Scholar : PubMed/NCBI | |
Medina PP, Nolde M and Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 467:86–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
Selcuklu SD, Donoghue MT and Spillane C: miR-21 as a key regulator of oncogenic processes. Biochem Soc Transac. 37:918–925. 2009. View Article : Google Scholar | |
Favreau AJ, McGlauflin RE, Duarte CW and Sathyanarayana P: miR-199b, a novel tumor suppressor miRNA in acute myeloid leukemia with prognostic implications. Exp Hematol Oncol. 5:42016. View Article : Google Scholar : PubMed/NCBI | |
Venkataraman S, Birks DK, Balakrishnan I, Alimova I, Harris PS, Patel PR, Handler MH, Dubuc A, Taylor MD, Foreman NK and Vibhakar R: MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem. 288:1918–1928. 2013. View Article : Google Scholar : PubMed/NCBI | |
Boukhari A, Alhosin M, Bronner C, Sagini K, Truchot C, Sick E, Schini-Kerth VB, André P, Mély Y, Mousli M and Gies JP: CD47 activation-induced UHRF1 over-expression is associated with silencing of tumor suppressor gene p16INK4A in glioblastoma cells. Anticancer Res. 35:149–157. 2015.PubMed/NCBI | |
Arima Y, Hirota T, Bronner C, Mousli M, Fujiwara T, Niwa S, Ishikawa H and Saya H: Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells. 9:131–142. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alhosin M, Abusnina A, Achour M, Sharif T, Muller C, Peluso J, Chataigneau T, Lugnier C, Schini-Kerth VB, Bronner C and Fuhrmann G: Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol. 79:1251–1260. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu SM, Cheng WL, Liao CJ, Chi HC, Lin YH, Tseng YH, Tsai CY, Chen CY, Lin SL, Chen WJ, et al: Negative modulation of the epigenetic regulator, UHRF1, by thyroid hormone receptors suppresses liver cancer cell growth. Int J Cancer. 137:37–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
Soleimani A, Ghanadi K, Noormohammadi Z and Irani S: The correlation between miR-146a C/G polymorphism and UHRF1gene expression level in gastric tumor. J Dig Dis. 17:169–174. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ge M, Gui Z, Wang X and Yan F: Analysis of the UHRF1 expression in serum and tissue for gastric cancer detection. Biomarkers. 20:183–188. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Zhao X, Han Y, Lu Y, Shang Y, Liu C, Li T, Jin Z, Fan D and Wu K: Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J. 27:4929–4939. 2013. View Article : Google Scholar : PubMed/NCBI | |
Patnaik SK, Kannisto E, Mallick R and Yendamuri S: Overexpression of the lung cancer-prognostic miR-146b microRNAs has a minimal and negative effect on the malignant phenotype of A549 lung cancer cells. PLoS One. 6:e223792011. View Article : Google Scholar : PubMed/NCBI | |
Xiao B, Zhu ED, Li N, Lu DS, Li W, Li BS, Zhao YL, Mao XH, Guo G, Yu PW and Zou QM: Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol Rep. 27:559–566. 2012.PubMed/NCBI | |
Yang GL, Zhang LH, Bo JJ, Chen HG, Cao M, Liu DM and Huang YR: UHRF1 is associated with tumor recurrence in non-muscle-invasive bladder cancer. Med Oncol. 29:842–847. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Huang Z, Zhu Z, Zheng X, Liu J, Han Z, Ma X and Zhang Y: Upregulated UHRF1 promotes bladder cancer cell invasion by epigenetic silencing of KiSS1. PLoS One. 9:e1042522014. View Article : Google Scholar : PubMed/NCBI | |
Ying L, Lin J, Qiu F, Cao M, Chen H, Liu Z and Huang Y: Epigenetic repression of regulator of G-protein signaling 2 by ubiquitin-like with PHD and ring-finger domain 1 promotes bladder cancer progression. FEBS J. 282:174–182. 2015. View Article : Google Scholar : PubMed/NCBI | |
Unoki M, Kelly JD, Neal DE, Ponder BA, Nakamura Y and Hamamoto R: UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer. 101:98–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wu Q, Xu B, Wang P, Fan W, Cai Y, Gu X and Meng F: miR-124 exerts tumor suppressive functions on the cell proliferation, motility and angiogenesis of bladder cancer by fine-tuning UHRF1. FEBS J. 282:4376–4388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matsushita R, Yoshino H, Enokida H, Goto Y, Miyamoto K, Yonemori M, Inoguchi S, Nakagawa M and Seki N: Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness. Oncotarget. 7:28460–28487. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie W, Li X, Chen X and Huang S and Huang S: Decreased expression of PRDM2 (RIZ1) and its correlation with risk stratification in patients with myelodysplastic syndrome. Br J Haematol. 150:242–244. 2010.PubMed/NCBI | |
Kim KC, Geng L and Huang S: Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res. 63:7619–7623. 2003.PubMed/NCBI | |
Wotschofsky Z, Gummlich L, Liep J, Stephan C, Kilic E, Jung K, Billaud JN and Meyer HA: Integrated microRNA and mRNA signature associated with the transition from the locally confined to the metastasized clear cell renal cell carcinoma exemplified by miR-146-5p. PLoS One. 11:e01487462016. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Peng J, Mo R, Ma S, Wang J, Zang L, Li W and Fan J: Ubiquitin E3 ligase UHRF1 regulates p53 ubiquitination and p53-dependent cell apoptosis in clear cell renal cell carcinoma. Biochem Biophys Res Commun. 464:147–153. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li YL, Wang J, Zhang CY, Shen YQ, Wang HM, Ding L, Gu YC, Lou JT, Zhao XT, Ma Z and Jin YX: MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget. 7:59287–59298. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Zhao X, Liu X, Wang Y, Huang J, Jiang B, Chen Q and Yu J: miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. Prostate. 74:1613–1621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Riquelme I, Tapia O, Leal P, Sandoval A, Varga MG, Letelier P, Buchegger K, Bizama C, Espinoza JA, Peek RM, et al: miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3K/AKT/mTOR pathway. Cell Oncology (Dordr). 39:23–33. 2016. View Article : Google Scholar | |
Farhadi E, Zaker F, Safa M and Rezvani MR: miR-101 sensitizes K562 cell line to imatinib through Jak2 downregulation and inhibition of NF-κB target genes. Tumour Biol. 37:14117–14128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goto Y, Kurozumi A, Nohata N, Kojima S, Matsushita R, Yoshino H, Yamazaki K, Ishida Y, Ichikawa T, Naya Y and Seki N: The microRNA signature of patients with sunitinib failure: Regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget. 7:59070–59086. 2016. View Article : Google Scholar : PubMed/NCBI | |
Walter A, Etienne-Selloum N, Brasse D, Khallouf H, Bronner C, Rio MC, Beretz A and Schini-Kerth VB: Intake of grape-derived polyphenols reduces C26 tumor growth by inhibiting angiogenesis and inducing apoptosis. FASEB J. 24:3360–3369. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kofunato Y, Kumamoto K, Saitou K, Hayase S, Okayama H, Miyamoto K, Sato Y, Katakura K, Nakamura I, Ohki S, et al: UHRF1 expression is upregulated and associated with cellular proliferation in colorectal cancer. Oncol Rep. 28:1997–2002. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Xu Y, Ge M, Gui Z and Yan F: Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis. Cancer Sci. 106:833–839. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, Prosper F and Garcia-Foncillas J: Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 125:2737–2743. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, Danielsen SA, Lind GE, Nesbakken A, Kallioniemi O, Lothe RA and Skotheim RI: MiR-9, −31, and −182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 14:868–879. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu MH, Huang CC, Pan MR, Chen HH and Hung WC: Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 18:6416–6425. 2012. View Article : Google Scholar : PubMed/NCBI | |
Unoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R and Nakamura Y: UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer. 103:217–222. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Meng S, Xu Q, Wang X, Wang J, Gong R, Song Y, Duan Y and Zhang Y: Gene expression profiling of lung adenocarcinoma in Xuanwei, China. Eur J Cancer Prev. 25:508–517. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng W, Yan M, Yu T, Ge H, Lin H, Li J, Liu Y, Geng Q, Zhu M, Liu L, et al: Quantitative proteomic analysis of the metastasis-inhibitory mechanism of miR-193a-3p in non-small cell lung cancer. Cell Physiol Biochem. 35:1677–1688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Daskalos A, Oleksiewicz U, Filia A, Nikolaidis G, Xinarianos G, Gosney JR, Malliri A, Field JK and Liloglou T: UHRF1-mediated tumor suppressor gene inactivation in nonsmall cell lung cancer. Cancer. 117:1027–1037. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, et al: MicroRNA-193a-3p and −5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene. 34:413–423. 2015. View Article : Google Scholar : PubMed/NCBI |