Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer (Review)
- Authors:
- Prakriti Sen
- Pooja Ganguly
- Niladri Ganguly
-
Affiliations: Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India - Published online on: October 30, 2017 https://doi.org/10.3892/ol.2017.7292
- Pages: 11-22
-
Copyright: © Sen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bhat S, Kabekkodu SP, Noronha A and Satyamoorthy K: Biological implications and therapeutic significance of DNA methylation regulated genes in cervical cancer. Biochimie. 121:298–311. 2016. View Article : Google Scholar : PubMed/NCBI | |
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I and Gasparini R: Chapter Eight-Human Papillomavirus Vaccine: State of the Art and Future Perspectives. Adv Protein Chemistry Structural Biol. 101:231–322. 2015. View Article : Google Scholar | |
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Pharmaceuticals: A Review of human carcinogens. IARC monographs on the evaluation of carcinogenic risks to humans. 100A:(IARC Monographs). 1–401. 2012. | |
D'Andrilli G: Advances in cervical cancer and ongoing clinical trialsGynecological Cancers. Giordano A and Macaluso M: Springer International Publishing; Cham: pp. 51–64. 2016 | |
Zhao S: Specific Type Epigenetic Changes in Cervical CancersCancer Epigenetics, Methods in Molecular Biology (Methods and Protocols). 1238. Verma M: Humana Press; New York, NY: pp. 733–749. 2015 | |
Langsfeld E and Laimins LA: Human papillomaviruses: Research priorities for the next decade. Trends Cancer. 2:234–240. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Shu M, He L, Yu X, Liu X, Lu Y, Chen Y, Miao X and Chen X: Epigenomic landscape of 5-hydroxymethylcytosine reveals its transcriptional regulation of lncRNAs in colorectal cancer. Br J Cancer. 116:658–668. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sova P, Feng Q, Geiss G, Wood T, Strauss R, Rudolf V, Lieber A and Kiviat N: Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev. 15:114–123. 2006. View Article : Google Scholar : PubMed/NCBI | |
Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M and Murty VV: Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: Its relationship to clinical outcome. Mol Cancer. 2:242003. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, Dem A, Dembele B, Critchlow CW, Xi L, Lu H, et al: Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst. 97:273–282. 2005. View Article : Google Scholar : PubMed/NCBI | |
Steenbergen RD, Kramer D, Braakhuis BJ, Stern PL, Verheijen RH, Meijer CJ and Snijders PJ: TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst. 96:294–305. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Ma D and Zhao S: DNA methylation changes in cervical cancers. Methods Mol Biol. 863:155–176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trang P, Weidhaas JB and Slack FJ: MicroRNAs and cancerThe Molecular Basis of Human Cancer. Coleman WB and Tsongalis GJ: 2nd. Springer; New York, New York, NY: pp. 277–286. 2017, View Article : Google Scholar | |
Leung TW, Liu SS, Leung RC, Chu MM, Cheung AN and Ngan HY: HPV 16 E2 binding sites 1 and 2 become more methylated than E2 binding site 4 during cervical carcinogenesis. J Med Virol. 87:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI | |
Doeberitz MVK and Vinokurova S: Compounds and methods associated with differential methylation of human papilloma virus genomes in epithelial cells. US Patent 12/740,986. Filed October 31, 2008; issued September 29. 2015. | |
Kan YY, Liou YL, Wang HJ, Chen CY, Sung LC, Chang CF and Liao CI: PAX1 methylation as a potential biomarker for cervical cancer screening. Int J Gynecol Cancer. 24:928–934. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N and Kaur J: Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol Biol Rep. 39:9145–9157. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guenin S, Mouallif M, Deplus R, Lampe X, Krusy N, Calonne E, Delbecque K, Kridelka F, Fuks F, Ennaji MM and Delvenne P: Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS One. 7:e427042012. View Article : Google Scholar : PubMed/NCBI | |
Missaoui N, Hmissa S, Trabelsi A, Traoré C, Mokni M, Dante R and Frappart L: Promoter hypermethylation of CDH13, DAPK1 and TWIST1 genes in precancerous and cancerous lesions of the uterine cervix. Pathol Res Pract. 207:37–42. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang HJ: Aberrant DNA methylation in cervical carcinogenesis. Chin J Cancer. 32:42–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liz J and Esteller M: lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta. 1859:169–176. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang JT, Ding L, Jiang SW, Hao J, Zhao WM, Zhou Q, Yang ZK and Zhang L: Folate deficiency and aberrant expression of DNA methyltransferase 1 were associated with cervical cancerization. Curr Pharm Des. 20:1639–1646. 2014. View Article : Google Scholar : PubMed/NCBI | |
Berdasco M and Esteller M: Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jackson R, Rosa BA, Lameiras S, Cuninghame S, Bernard J, Floriano WB, Lambert PF, Nicolas A and Zehbe I: Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genomics. 17:8512016. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, le Sage C, Agami R, Snijders PJ and Steenbergen RD: Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 9:1672010. View Article : Google Scholar : PubMed/NCBI | |
Botezatu A, Goia-Rusanu CD, Iancu IV, Huica I, Plesa A, Socolov D, Ungureanu C and Anton G: Quantitative analysis of the relationship between microRNA-124a, −34b and −203 gene methylation and cervical oncogenesis. Mol Med Rep. 4:121–128. 2011.PubMed/NCBI | |
Yao T, Rao Q, Liu L, Zheng C, Xie Q, Liang J and Lin Z: Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in cervical cancer. Virol J. 10:1752013. View Article : Google Scholar : PubMed/NCBI | |
Wilting SM, Verlaat W, Jaspers A, Makazaji NA, Agami R, Meijer CJ, Snijders PJ and Steenbergen RD: Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis. Epigenetics. 8:220–228. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morgan MA and Shilatifard A: Chromatin signatures of cancer. Genes Dev. 29:238–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khan SA, Reddy D and Gupta S: Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment? World J Biol Chem. 6:333–345. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ghittoni R, Accardi R, Chiocca S and Tommasino M: The role of human papillomaviruses in carcinogenesis. Ecancermedicalscience. 9:5262015. View Article : Google Scholar : PubMed/NCBI | |
Ruttkay-Nedecky B, Jimenez AM Jimenez, Nejdl L, Chudobova D, Gumulec J, Masarik M, Adam V and Kizek R: Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review). Int J Oncol. 43:1754–1762. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mesri EA, Feitelson MA and Munger K: Human viral oncogenesis: A cancer hallmarks analysis. Cell Host Microbe. 15:266–282. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen AA, Gheit T, Franceschi S, Tommasino M and Clifford GM; IARC HPV Variant Study Group, : Human papillomavirus 18 genetic variation and cervical cancer risk worldwide. J Virol. 89:10680–10687. 2015. View Article : Google Scholar : PubMed/NCBI | |
Evans W, Filippova M, Aragon R, Filippov V, Reeves ME and Duerksen-Hughes P: Abstract 1828: Proteomic analysis of the effect of E6 star expression on cellular pathways in HPV positive SiHa and HPV negative C33A cervical carcinoma cells. Cancer Res. 75:1828. 2015. View Article : Google Scholar : PubMed/NCBI | |
Illiano E, Demurtas OC, Massa S, Di Bonito P, Consalvi V, Chiaraluce R, Zanotto C, De Giuli Morghen C, Radaelli A, Venuti A and Franconi R: Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: Implications for HPV-tumor diagnosis and therapy. J Transl Med. 14:2242016. View Article : Google Scholar : PubMed/NCBI | |
Duensing S and Münger K: The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62:7075–7082. 2002.PubMed/NCBI | |
Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M and Huh K: Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 78:11451–11460. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kruiswijk F, Labuschagne CF and Vousden KH: p53 in survival, death and metabolic health: A lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 16:393–405. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ and Scheffner M: Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci USA. 98:pp. 1218–1223. 2001; View Article : Google Scholar : PubMed/NCBI | |
Mantovani F and Banks L: The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene. 20:7874–7887. 2001. View Article : Google Scholar : PubMed/NCBI | |
Paek AL, Liu JC, Loewer A, Forrester WC and Lahav G: Cell-to-cell variation in p53 dynamics leads to fractional killing. Cell. 165:631–642. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yim EK and Park JS: The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 37:319–324. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ganguly N and Parihar SP: Human papilloma virus E6 and E7 oncoproteins as risk factors for tumorigenesis. J Biosci. 34:113–123. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tommasino M: The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol. 26:13–21. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yin FF, Wang N, Bi XN, Yu X, Xu XH, Wang YL, Zhao CQ, Luo B and Wang YK: Serine/threonine kinases 31(STK31) may be a novel cellular target gene for the HPV16 oncogene E7 with potential as a DNA hypomethylation biomarker in cervical cancer. Virol J. 13:602016. View Article : Google Scholar : PubMed/NCBI | |
Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C and Cervera E: Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer. 4:382005. View Article : Google Scholar : PubMed/NCBI | |
Whiteside MA, Siegel EM and Unger ER: Human papillomavirus and molecular considerations for cancer risk. Cancer. 113 Suppl 10:S2981–S2994. 2008. View Article : Google Scholar | |
Leonard SM, Wei W, Collins SI, Pereira M, Diyaf A, Constandinou-Williams C, Young LS, Roberts S and Woodman CB: Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women. Carcinogenesis. 33:1286–1293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang P and Yue Y: Human papillomavirus oncoproteins and apoptosis (Review). Exp Ther Med. 7:3–7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Burgers WA, Blanchon L, Pradhan S, de Launoit Y, Kouzarides T and Fuks F: Viral oncoproteins target the DNA methyltransferases. Oncogene. 26:1650–1655. 2007. View Article : Google Scholar : PubMed/NCBI | |
Au Yeung CL, Tsang WP, Tsang TY, Co NN, Yau PL and Kwok TT: HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53. Oncol Rep. 24:1599–1604. 2010.PubMed/NCBI | |
Richards KL, Zhang B, Baggerly KA, Colella S, Lang JC, Schuller DE and Krahe R: Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability. PLoS One. 4:e49412009. View Article : Google Scholar : PubMed/NCBI | |
Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY, Lu YY, Tang YA, Yang YC, Yang PC and Wang YC: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 70:5807–5817. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Lv L, Shao Q, Li X and Dian A: Human papillomavirus early proteins and apoptosis. Arch Gynecol Obstet. 287:541–548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Banzai C, Nishino K, Quan J, Yoshihara K, Sekine M, Yahata T and Tanaka K: Gynecological Cancer Registry of Niigata: Promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A genes in cervical carcinoma. Int J Clin Oncol. 19:127–132. 2014. View Article : Google Scholar : PubMed/NCBI | |
Samuelsson J, Alonso S, Ruiz-Larroya T, Cheung TH, Wong YF and Perucho M: Frequent somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and gynecological cancer. Int J Oncol. 38:1575–1577. 2011.PubMed/NCBI | |
Shuangshoti S, Hourpai N, Pumsuk U and Mutirangura A: Line-1 hypomethylation in multistage carcinogenesis of the uterine cervix. Asian Pac J Cancer Prev. 8:307–309. 2007.PubMed/NCBI | |
Badal V, Chuang LS, Tan EH, Badal S, Villa LL, Wheeler CM, Li BF and Bernard HU: CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: Genomic hypomethylation correlates with carcinogenic progression. J Virol. 77:6227–6234. 2003. View Article : Google Scholar : PubMed/NCBI | |
How Kit A, Nielsen HM and Tost J: DNA methylation based biomarkers: Practical considerations and applications. Biochimie. 94:2314–2337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mersakova S, Nachajova M, Szepe P, Kasajova PS and Halasova E: DNA methylation and detection of cervical cancer and precancerous lesions using molecular methods. Tumor Biol. 37:23–27. 2016. View Article : Google Scholar | |
Steenbergen RD, Snijders PJ, Heideman DA and Meijer CJ: Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer. 14:395–405. 2014. View Article : Google Scholar : PubMed/NCBI | |
Whittaker SR, Mallinger A, Workman P and Clarke PA: Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther. 173:83–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ and Bartek J: Cell cycle-targeted cancer therapies S phase: The DNA synthesis phase of the cell cycle. 1:Annual Review of Cancer Biology. 41–57. 2017. View Article : Google Scholar | |
Huang LW, Pan HS, Lin YH, Seow KM, Chen HJ and Hwang JL: P16 methylation is an early event in cervical carcinogenesis. Int J Gynecol Cancer. 21:452–456. 2011. View Article : Google Scholar : PubMed/NCBI | |
Terra AP, Murta EF, Maluf PJ, Caballero OL, Brait M and Adad SJ: Aberrant promoter methylation can be useful as a marker of recurrent disease in patients with cervical intraepithelial neoplasia grade III. Tumori. 93:572–579. 2007.PubMed/NCBI | |
Aran D, Sabato S and Hellman A: DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 14:R212013. View Article : Google Scholar : PubMed/NCBI | |
Chen CL, Liu SS, Ip SM, Wong LC, Ng TY and Ngan HY: E-cadherin expression is silenced by DNA methylation in cervical cancer cell lines and tumours. Eur J Cancer. 39:517–523. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jeong DH, Youm MY, Kim YN, Lee KB, Sung MS, Yoon HK and Kim KT: Promoter methylation of p16, DAPK, CDH1, and TIMP-3 genes in cervical cancer: Correlation with clinicopathologic characteristics. Int J Gynecol Cancer. 16:1234–1240. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shivapurkar N, Sherman ME, Stastny V, Echebiri C, Rader JS, Nayar R, Bonfiglio TA, Gazdar AF and Wang SS: Evaluation of candidate methylation markers to detect cervical neoplasia. Gynecol Oncol. 107:549–553. 2007. View Article : Google Scholar : PubMed/NCBI | |
Overmeer RM, Henken FE, Snijders PJ, Claassen-Kramer D, Berkhof J, Helmerhorst TJ, Heideman DA, Wilting SM, Murakami Y, Ito A, et al: Association between dense CADM1 promoter methylation and reduced protein expression in high-grade CIN and cervical SCC. J Pathol. 215:388–397. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yadav SS, Prasad SB, Das M, Kumari S, Pandey LK, Singh S, Pradhan S and Narayan G: Epigenetic silencing of CXCR4 promotes loss of cell adhesion in cervical cancer. Biomed Res Int. 2014:5814032014. View Article : Google Scholar : PubMed/NCBI | |
Narayan G, Xie D, Ishdorj G, Scotto L, Mansukhani M, Pothuri B, Wright JD, Kaufmann AM, Schneider A, Arias-Pulido H and Murty VV: Epigenetic inactivation of TRAIL decoy receptors at 8p12-21.3 commonly deleted region confers sensitivity to Apo2L/trail-cisplatin combination therapy in cervical cancer. Genes Chromosomes Cancer. 55:177–189. 2016. View Article : Google Scholar : PubMed/NCBI | |
Snellenberg S, Cillessen SA, Van Criekinge W, Bosch L, Meijer CJ, Snijders PJ and Steenbergen RD: Methylation-mediated repression of PRDM14 contributes to apoptosis evasion in HPV-positive cancers. Carcinogenesis. 35:2611–2618. 2014. View Article : Google Scholar : PubMed/NCBI | |
Michie AM, McCaig AM, Nakagawa R and Vukovic M: Death-associated protein kinase (DAPK) and signal transduction: Regulation in cancer. FEBS J. 277:74–80. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Choi YD, Lee JS, Lee JH, Nam JH and Choi C: Assessment of DNA methylation for the detection of cervical neoplasia in liquid-based cytology specimens. Gynecol Oncol. 116:99–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Nijhuis ER, Volders HH, Eijsink JJ, Lendvai A, Zhang B, Hollema H, Schuuring E, Wisman GB and van der Zee AG: Gene promoter methylation patterns throughout the process of cervical carcinogenesis. Cell Oncol. 32:131–143. 2010.PubMed/NCBI | |
Jha AK, Nikbakht M, Parashar G, Shrivastava A, Capalash N and Kaur J: Reversal of hypermethylation and reactivation of the RARβ2 gene by natural compounds in cervical cancer cell lines. Folia Biol (Praha). 56:195–200. 2010.PubMed/NCBI | |
Rabizadeh S, Xavier RJ, Ishiguro K, Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A, Mollahan P, Pfeifer GP, Avruch J and Seed B: The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem. 279:29247–29254. 2004. View Article : Google Scholar : PubMed/NCBI | |
Aoki K and Taketo MM: Adenomatous polyposis coli (APC): A multi-functional tumor suppressor gene. J Cell Sci. 120:3327–3335. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dong SM, Kim HS, Rha SH and Sidransky D: Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res. 7:1982–1986. 2001.PubMed/NCBI | |
Song Y and Zhang C: Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chemother Pharmacol. 63:605–613. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baer C, Claus R and Plass C: Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 73:473–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-Wences H, Peralta-Zaragoza O and Fernández-Tilapa G: Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep. 31:2467–2476. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iida M, Banno K, Yanokura M, Nakamura K, Adachi M, Nogami Y, Umene K, Masuda K, Kisu I, Iwata T, et al: Candidate biomarkers for cervical cancer treatment: Potential for clinical practice (Review). Mol Clin Oncol. 2:647–655. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dakubo GD: Methylated DNA as cancer biomarkers in circulationCancer Biomarkers in Body Fluids. 1st. Springer International Publishing; Cham: pp. 103–123. 2016, View Article : Google Scholar | |
Huang RL, Su PH, Liao YP, Wu TI, Hsu YT, Lin WY, Wang HC, Weng YC, Ou YC, Huang TH and Lai HC: Integrated Epigenomics analysis reveals a DNA methylation panel for endometrial cancer detection using cervical scrapings. Clin Cancer Res. 23:263–272. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kahn SL, Ronnett BM, Gravitt PE and Gustafson KS: Quantitative methylation-specific PCR for the detection of aberrant DNA methylation in liquid-based Pap tests. Cancer. 114:57–64. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wisman GB, Nijhuis ER, Hoque MO, Reesink-Peters N, Koning AJ, Volders HH, Buikema HJ, Boezen HM, Hollema H, Schuuring E, et al: Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer. 119:1908–1914. 2006. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Hawes SE, Stern JE, Dem A, Sow PS, Dembele B, Toure P, Sova P, Laird PW and Kiviat NB: Promoter hypermethylation of tumor suppressor genes in urine from patients with cervical neoplasia. Cancer Epidemiol Biomarkers Prev. 16:1178–1184. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Raju GC and Hooi SC: Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase. Cell Death Differ. 12:395–404. 2005. View Article : Google Scholar : PubMed/NCBI | |
Danam RP, Howell SR, Brent TP and Harris LC: Epigenetic regulation of O6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins. Mol Cancer Ther. 4:61–69. 2005.PubMed/NCBI | |
Lee J, Yoon YS and Chung JH: Epigenetic silencing of the WNT antagonist DICKKOPF-1 in cervical cancer cell lines. Gynecol Oncol. 109:270–274. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bodily JM, Mehta KP and Laimins LA: Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 71:1187–1195. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lu TY, Kao CF, Lin CT, Huang DY, Chiu CY, Huang YS and Wu HC: DNA methylation and histone modification regulate silencing of OPG during tumor progression. J Cell Biochem. 108:315–325. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Joh K, Yatsuki H, Zhao W, Soejima H, Higashimoto K, Noguchi M, Yokoyama M, Iwasaka T and Mukai T: Retinoic acid receptor beta 2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Cancer Lett. 247:318–327. 2007. View Article : Google Scholar : PubMed/NCBI | |
Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M and Kurdistani SK: Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 435:1262–1266. 2005. View Article : Google Scholar : PubMed/NCBI | |
Plesa A, Iancu IV, Botezatu A, Huica I, Stoian M and Anton G: The involvement of epigenetic mechanisms in HPV-induced cervical cancer. Human Papillomavirus – Research in a Global Perspective. Rajkumar R: 9InTech. 2016. View Article : Google Scholar | |
Easwaran H, Tsai HC and Baylin SB: Cancer Epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 54:716–727. 2014. View Article : Google Scholar : PubMed/NCBI | |
de la Cruz-Hernández E, Pérez-Cárdenas E, Contreras-Paredes A, Cantú D, Mohar A, Lizano M and Dueñas-González A: The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol J. 4:182007. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, et al: Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 4:e8382013. View Article : Google Scholar : PubMed/NCBI | |
Hassan M, Watari H, AbuAlmaaty A, Ohba Y and Sakuragi N: Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014:1508452014. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Epigenetics in cancer. N Engl J Med. 358:1148–1159. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Zhang H and Jin S: Epigenetics and cervical cancer: From pathogenesis to therapy. Tumor Biol. 35:5083–5093. 2014. View Article : Google Scholar | |
Coronel J, Cetina L, Pacheco I, Trejo-Becerril C, González-Fierro A, de la Cruz-Hernandez E, Perez-Cardenas E, Taja-Chayeb L, Arias-Bofill D, Candelaria M, et al: A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol. 28 Suppl 1:S540–S546. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zambrano P, Segura-Pacheco B, Perez-Cardenas E, Cetina L, Revilla-Vazquez A, Taja-Chayeb L, Chavez-Blanco A, Angeles E, Cabrera G, Sandoval K, et al: A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer. 5:442005. View Article : Google Scholar : PubMed/NCBI | |
You JS, Kang JK, Lee EK, Lee JC, Lee SH, Jeon YJ, Koh DH, Ahn SH, Seo DW, Lee HY, et al: Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene. 27:1376–1386. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kelly WK, O'Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, et al: Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol. 23:3923–3931. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen CC, Lee KD, Pai MY, Chu PY, Hsu CC, Chiu CC, Chen LT, Chang JY, Hsiao SH and Leu YW: Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int. 15:982015. View Article : Google Scholar : PubMed/NCBI | |
Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C and Goggins M: Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 63:4158–1166. 2003.PubMed/NCBI | |
Virmani AK, Muller C, Rathi A, Zoechbauer-Mueller S, Mathis M and Gazdar AF: Aberrant methylation during cervical carcinogenesis. Clin Cancer Res. 7:584–589. 2001.PubMed/NCBI | |
Kim YT and Zhao M: Aberrant cell cycle regulation in cervical carcinoma. Yonsei Med J. 46:597–613. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ohtani N, Yamakoshi K, Takahashi A and Hara E: The p16INK4a-RB pathway: Molecular link between cellular senescence and tumor suppression. J Med Invest. 51:146–153. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ki KD, Lee SK, Tong SY, Lee JM, Song DH and Chi SG: Role of 5′-CpG island hypermethylation of the FHIT gene in cervical carcinoma. J Gynecol Oncol. 19:117–122. 2008. View Article : Google Scholar : PubMed/NCBI | |
Özören N and El-Deiry WS: Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol. 13:135–147. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jung S, Yi L, Jeong D, Kim J, An S, Oh TJ, Kim CH, Kim CJ, Yang Y, Kim KI, et al: The role of ADCYAP1, adenylate cyclase activating polypeptide 1, as a methylation biomarker for the early detection of cervical cancer. Oncol Rep. 25:245–252. 2011.PubMed/NCBI | |
Huang RL, Chang CC, Su PH, Chen YC, Liao YP, Wang HC, Yo YT, Chao TK, Huang HC, Lin CY, et al: Methylomic analysis identifies frequent DNA methylation of zinc finger protein 582 (ZNF582) in cervical neoplasms. PLoS One. 7:e410602012. View Article : Google Scholar : PubMed/NCBI | |
Ivanova T, Vinokurova S, Petrenko A, Eshilev E, Solovyova N, Kisseljov F and Kisseljova N: Frequent hypermethylation of 5′flanking region of TIMP-2 gene in cervical cancer. Int J Cancer. 108:882–886. 2004. View Article : Google Scholar : PubMed/NCBI | |
Widschwendter A, Müller HM, Fiegl H, Ivarsson L, Wiedemair A, Müller-Holzner E, Goebel G, Marth C and Widschwendter M: DNA methylation in serum and tumors of cervical cancer patients. Clin Cancer Res. 10:565–571. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhai Y, Bommer GT, Feng Y, Wiese AB, Fearon ER and Cho KR: Loss of estrogen receptor 1 enhances cervical cancer invasion. Am J Pathol. 177:884–895. 2010. View Article : Google Scholar : PubMed/NCBI |