1
|
Shi X, Tao B, He H, Sun Q, Fan C, Bian L,
Zhao W and Lu YC: MicroRNAs-based network: A novel therapeutic
agent in pituitary adenoma. Med Hypotheses. 78:380–384. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Liao C, Chen W, Fan X, Jiang X, Qiu L,
Chen C, Zhu Y and Wang H: MicroRNA-200c inhibits apoptosis in
pituitary adenoma cells by targeting the PTEN/Akt signaling
pathway. Oncol Res. 21:129–136. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sukumari-Ramesh S, Singh N, Jensen MA,
Dhandapani KM and Vender JR: Anacardic acid induces
caspase-independent apoptosis and radiosensitizes pituitary adenoma
cells. J Neurosurg. 114:1681–1690. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Srivastava N, Manvati S, Srivastava A, Pal
R, Kalaiarasan P, Chattopadhyay S, Gochhait S, Dua R and Bamezai
RN: miR-24-2 controls H2AFX expression regardless of gene copy
number alteration and induces apoptosis by targeting antiapoptotic
gene BCL-2: A potential for therapeutic intervention. Breast Cancer
Res. 13:R392011. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Liu X, Wang A, Heidbreder CE, Jiang L, Yu
J, Kolokythas A, Huang L, Dai Y and Zhou X: MicroRNA-24 targeting
RNA-binding protein DND1 in tongue squamous cell carcinoma. FEBS
Lett. 584:4115–4120. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xu XM, Qian JC, Deng ZL, Cai Z, Tang T,
Wang P, Zhang KH and Cai JP: Expression of miR-21, miR-31, miR-96
and miR-135b is correlated with the clinical parameters of
colorectal cancer. Oncol Lett. 4:339–345. 2012.PubMed/NCBI
|
7
|
Chen S, Dai Y, Zhang X, Jin D, Li X and
Zhang Y: Increased miR-449a expression in colorectal carcinoma
tissues is inversely correlated with serum carcinoembryonic
antigen. Oncol Lett. 7:568–572. 2014.PubMed/NCBI
|
8
|
Lu Z, Ye Y, Jiao D, Qiao J, Cui S and Liu
Z: miR-155 and miR-31 are differentially expressed in breast cancer
patients and are correlated with the estrogen receptor and
progesterone receptor status. Oncol Lett. 4:1027–1032.
2012.PubMed/NCBI
|
9
|
Lei SL, Zhao H, Yao HL, Chen Y, Lei ZD,
Liu KJ and Yang Q: Regulatory roles of microRNA-708 and microRNA-31
in proliferation, apoptosis and invasion of colorectal cancer
cells. Oncol Lett. 8:1768–1774. 2014.PubMed/NCBI
|
10
|
Luo J, Zhou J, Cheng Q, Zhou C and Ding Z:
Role of microRNA-133a in epithelial ovarian cancer pathogenesis and
progression. Oncol Lett. 7:1043–1048. 2014.PubMed/NCBI
|
11
|
D'Angelo D, Palmieri D, Mussnich P, Roche
M, Wierinckx A, Raverot G, Fedele M, Croce CM, Trouillas J and
Fusco A: Altered microRNA expression profile in human pituitary GH
adenomas: Down-regulation of miRNA targeting HMGA1, HMGA2 and E2F1.
J Clin Endocrinol Metab. 97:E1128–E1138. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Trivellin G, Butz H, Delhove J, Igreja S,
Chahal HS, Zivkovic V, McKay T, Patócs A, Grossman AB and Korbonits
M: MicroRNA miR-107 is overexpressed in pituitary adenomas and
inhibits the expression of aryl hydrocarbon receptor-interacting
protein in vitro. Am J Physiol Endocrinol Metab. 303:E708–E719.
2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bottoni A, Piccin D, Tagliati F, Luchin A,
Zatelli MC and degli Uberti EC: miR-15a and miR-16-1
down-regulation in pituitary adenomas. J Cell Physiol. 204:280–285.
2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liang S, Chen L, Huang H and Zhi D: The
experimental study of miRNA in pituitary adenomas. Turk Neurosurg.
23:721–727. 2013.PubMed/NCBI
|
15
|
Kirisako T, Kamei K, Murata S, Kato M,
Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K and Iwai K: A
ubiquitin ligase complex assembles linear polyubiquitin chains.
EMBO J. 25:4877–4887. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Walczak H, Iwai K and Dikic I: Generation
and physiological roles of linear ubiquitin chains. BMC Biol.
10:232012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Thompson HG, Harris JW, Lin L and Brody
JP: Identification of the protein Zibra, its genomic organization,
regulation and expression in breast cancer cells. Exp Cell Res.
295:448–459. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhu J, Zhao C, Zhuang T, Jonsson P, Sinha
I, Williams C, Strömblad S and Dahlman-Wright K: RING finger
protein 31 promotes p53 degradation in breast cancer cells.
Oncogene. 35:1955–1964. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yao WJ, Wang YL, Lu JG, Guo L, Qi B and
Chen ZJ: MicroRNA-506 inhibits esophageal cancer cell proliferation
via targeting CREB1. Int J Clin Exp Pathol. 8:10868–10874.
2015.PubMed/NCBI
|
20
|
Ehrlund A, Jonsson P, Vedin LL, Williams
C, Gustafsson JA and Treuter E: Knockdown of SF-1 and RNF31 affects
components of steroidogenesis, TGFβ and Wnt/β-catenin signaling in
adrenocortical carcinoma cells. PLoS One. 7:e320802012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ehrlund A, Anthonisen EH, Gustafsson N,
Venteclef N, Robertson Remen K, Damdimopoulos AE, Galeeva A,
Pelto-Huikko M, Lalli E, Steffensen KR, et al: E3 ubiquitin ligase
RNF31 cooperates with DAX-1 in transcriptional repression of
steroidogenesis. Mol Cell Biol. 29:2230–2242. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liang CC, Park AY and Guan JL: In vitro
scratch assay: A convenient and inexpensive method for analysis of
cell migration in vitro. Nat Protoc. 2:329–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Micale L, Fusco C, Fontana A, Barbano R,
Augello B, De Nittis P, Copetti M, Pellico MT, Mandriani B,
Cocciadiferro D, et al: TRIM8 downregulation in glioma affects cell
proliferation and it is associated with patients survival. BMC
Cancer. 15:4702015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Avgeris M, Stravodimos K and Scorilas A:
Loss of miR-378 in prostate cancer, a common regulator of KLK2 and
KLK4, correlates with aggressive disease phenotype and predicts the
short-term relapse of the patients. Biol Chem. 395:1095–1104. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kulyté A, Lorente-Cebrián S, Gao H,
Mejhert N, Agustsson T, Arner P, Rydén M and Dahlman I: MicroRNA
profiling links miR-378 to enhanced adipocyte lipolysis in human
cancer cachexia. Am J Physiol Endocrinol Metab. 306:E267–E274.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen QG, Zhou W, Han T, Du SQ, Li ZH,
Zhang Z, Shan GY and Kong CZ: MiR-378 suppresses prostate cancer
cell growth through downregulation of MAPK1 in vitro and in vivo.
Tumour Biol. 37:2095–2103. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fei B and Wu H: MiR-378 inhibits
progression of human gastric cancer MGC-803 cells by targeting
MAPK1 in vitro. Oncol Res. 20:557–564. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma J, Lin J, Qian J, Qian W, Yin J, Yang
B, Tang Q, Chen X, Wen X, Guo H and Deng Z: MiR-378 promotes the
migration of liver cancer cells by down-regulating Fus expression.
Cell Physiol Biochem. 34:2266–2274. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wen W, Peng C, Kim MO, Ho Jeong C, Zhu F,
Yao K, Zykova T, Ma W, Carper A, Langfald A, et al: Knockdown of
RNF2 induces apoptosis by regulating MDM2 and p53 stability.
Oncogene. 33:421–428. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nie J, Xie P, Liu L, Xing G, Chang Z, Yin
Y, Tian C, He F and Zhang L: Smad ubiquitylation regulatory factor
1/2 (Smurf1/2) promotes p53 degradation by stabilizing the E3
ligase MDM2. J Biol Chem. 285:22818–22830. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhu J, Zhao C, Kharman-Biz A, Zhuang T,
Jonsson P, Liang N, Williams C, Lin CY, Qiao Y, Zendehdel K, et al:
The atypical ubiquitin ligase RNF31 stabilizes estrogen receptor
alpha and modulates estrogen-stimulated breast cancer cell
proliferation. Oncogene. 33:4340–4351. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu D, Wang B, Shang J, Song J and Zhang H:
miR-31 reduces cell growth of papillary thyroid carcinoma by
RNA-binding protein HuR. Clin Lab. 61:1625–1634. 2015. View Article : Google Scholar : PubMed/NCBI
|