1
|
Hefazi M, Siddiqui M, Patnaik M, Wolanskyj
A, Alkhateeb H, Zblewski D, Elliott M, Hogan W, Litzow M and
Al-Kali A: Prognostic impact of combined NPM1+/FLT3-genotype in
patients with acute myeloid leukemia with intermediate risk
cytogenetics stratified by age and treatment modalities. Leuk Res:
Sep. 3:2015.(Epub ahead of print).
|
2
|
Ong E, Szedlak A, Kang Y, Smith P, Smith
N, McBride M, Finlay D, Vuori K, Mason J, Ball ED, et al: A
scalable method for molecular network reconstruction identifies
properties of targets and mutations in acute myeloid leukemia. J
Comput Biol. 22:266–288. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Urtishak KA, Edwards AY, Wang LS, Hudome
A, Robinson BW, Barrett JS, Cao K, Cory L, Moore JS, Bantly AD, et
al: Potent obatoclax cytotoxicity and activation of triple death
mode killing across infant acute lymphoblastic leukemia. Blood.
121:2689–2703. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang F, Liu Z, Zeng J, Zhu H, Li J, Cheng
X, Jiang T, Zhang L, Zhang C, Chen T, et al: Metformin
synergistically sensitizes FLT3-ITD-positive acute myeloid leukemia
to sorafenib by promoting mTOR-mediated apoptosis and autophagy.
Leuk Res. 39:1421–1427. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim Y, Eom JI, Jeung HK, Jang JE, Kim JS,
Cheong JW, Kim YS and Min YH: Induction of cytosine
arabinoside-resistant human myeloid leukemia cell death through
autophagy regulation by hydroxychloroquine. Biomed Pharmacother.
73:87–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zauli G, Celeghini C, Melloni E, Voltan R,
Ongari M, Tiribelli M, di Iasio MG, Lanza F and Secchiero P: The
sorafenib plus nutlin-3 combination promotes synergistic
cytotoxicity in acute myeloid leukemic cells irrespectively of FLT3
and p53 status. Haematologica. 97:1722–1730. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Martelli AM, Lonetti A, Amadori S,
McCubrey JA and Chiarini F: Enhancing the effectiveness of
nucleoside analogs with mTORC1 blockers to treat acute myeloid
leukemia patients. Cell Cycle. 12:1815–1816. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu C, Xu P, Chen D, Fan X, Xu Y, Li M,
Yang X and Wang C: Roles of autophagy-related genes Beclin-1 and
LC3 in the development and progression of prostate cancer and
benign prostatic hyperplasia. Biomed Rep. 1:855–860.
2013.PubMed/NCBI
|
9
|
Liu L, He J, Wei X, Wan G, Lao Y, Xu W, Li
Z, Hu H, Hu Z, Luo X, et al: MicroRNA-20a-mediated loss of
autophagy contributes to breast tumorigenesis by promoting genomic
damage and instability. Oncogene. Jun 19–2017.(Epub ahead of
print). View Article : Google Scholar
|
10
|
Qiu S, Sun L, Jin Y, An Q, Weng C and
Zheng J: Silencing of BAG3 promotes the sensitivity of ovarian
cancer cells to cisplatin via inhibition of autophagy. Oncol Rep.
38:309–316. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Brigger D, Proikas-Cezanne T and Tschan
MP: WIPI-dependent autophagy during neutrophil differentiation of
NB4 acute promyelocytic leukemia cells. Cell Death Dis.
5:e13152014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xie N, Zhong L, Liu L, Fang Y, Qi X, Cao
J, Yang B, He Q and Ying M: Autophagy contributes to
dasatinib-induced myeloid differentiation of human acute myeloid
leukemia cells. Biochem Pharmacol. 89:74–85. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang SP, Niu YN, Yuan N, Zhang AH, Chao
D, Xu QP, Wang LJ, Zhang XG, Zhao WL, Zhao Y and Wang JR: Role of
autophagy in acute myeloid leukemia therapy. Chin J Cancer.
32:130–135. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin HO, Park JA, Kim HA, Chang YH, Hong
YJ, Park IC and Lee JK: Piperlongumine downregulates the expression
of HER family in breast cancer cells. Biochem Biophys Res Commun.
486:1083–1089. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bullova P, Cougnoux A, Abunimer L, Kopacek
J, Pastorekova S and Pacak K: Hypoxia potentiates the cytotoxic
effect of piperlongumine in pheochromocytoma models. Oncotarget.
7:40531–40545. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang F, Mao Y, You Q, Hua D and Cai D:
Piperlongumine induces apoptosis and autophagy in human lung cancer
cells through inhibition of PI3K/Akt/mTOR pathway. Int J
Immunopathol Pharmacol. 28:362–373. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Malkan UY, Gunes G, Isik A, Eliacik E,
Etgul S, Aslan T, Balaban MS, Haznedaroglu IC, Demiroglu H, Goker
H, et al: Rebound thrombocytosis following induction chemotherapy
is an independent predictor of a good prognosis in acute myeloid
leukemia patients attaining first complete remission. Acta
Haematol. 134:32–37. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
O'Hear C, Inaba H, Pounds S, Shi L, Dahl
G, Bowman WP, Taub JW, Pui CH, Ribeiro RC, Coustan-Smith E, et al:
Gemtuzumab ozogamicin can reduce minimal residual disease in
patients with childhood acute myeloid leukemia. Cancer.
119:4036–4043. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dhillon H, Chikara S and Reindl KM:
Piperlongumine induces pancreatic cancer cell death by enhancing
reactive oxygen species and DNA damage. Toxicol Rep. 1:309–318.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu J, Lan L, Lewin SJ, Rogers SA, Roy A,
Wu X, Gao P, Karanicolas J, Aubé J, Sun B and Xu L: Identification
of novel small molecule Beclin 1 mimetics activating autophagy.
Oncotarget. May 18–2017.(Epub ahead of print).
|
21
|
Tanios R, Bekdash A, Kassab E, Stone E,
Georgiou G, Frankel AE and Abi-Habib RJ: Human recombinant arginase
I(Co)-PEG5000 [HuArgI(Co)-PEG5000]-induced arginine depletion is
selectively cytotoxic to human acute myeloid leukemia cells. Leuk
Res. 37:1565–1571. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu LL, Long ZJ, Wang LX, Zheng FM, Fang
ZG, Yan M, Xu DF, Chen JJ, Wang SW, Lin DJ and Liu Q: Inhibition of
mTOR pathway sensitizes acute myeloid leukemia cells to aurora
inhibitors by suppression of glycolytic metabolism. Mol Cancer Res.
11:1326–1336. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Makhov P, Golovine K, Teper E, Kutikov A,
Mehrazin R, Corcoran A, Tulin A, Uzzo RG and Kolenko VM:
Piperlongumine promotes autophagy via inhibition of Akt/mTOR
signalling and mediates cancer cell death. Br J Cancer.
110:899–907. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang Y, Wang JW, Xiao X, Shan Y, Xue B,
Jiang G, He Q, Chen J, Xu HG, Zhao RX, et al: Piperlongumine
induces autophagy by targeting p38 signaling. Cell Death Dis.
4:e8242013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang KF, Yang H, Jiang WQ, Li S and Cai
YC: Puquitinib mesylate (XC-302) induces autophagy via inhibiting
the PI3K/AKT/mTOR signaling pathway in nasopharyngeal cancer cells.
Int J Mol Med. 36:1556–1562. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang WR, Chiu HC, Liao TL, Chuang KP,
Shih WL and Liu HJ: Avian reovirus protein p17 functions as a
nucleoporin Tpr suppressor leading to activation of p53, p21 and
PTEN and inactivation of PI3K/AKT/mTOR and ERK signaling pathways.
PLoS One. 10:e01336992015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou ZW, Li XX, He ZX, Pan ST, Yang Y,
Zhang X, Chow K, Yang T, Qiu JX, Zhou Q, et al: Induction of
apoptosis and autophagy via sirtuin1- and PI3 K/Akt/mTOR-mediated
pathways by plumbagin in human prostate cancer cells. Drug Des
Devel Ther. 9:1511–1554. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tsai JP, Lee CH, Ying TH, Lin CL, Lin CL,
Hsueh JT and Hsieh YH: Licochalcone A induces autophagy through
PI3K/Akt/mTOR inactivation and autophagy suppression enhances
licochalcone A-induced apoptosis of human cervical cancer cells.
Oncotarget. 6:28851–28866. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun H, Wang Z and Yakisich JS: Natural
products targeting autophagy via the PI3K/Akt/mTOR pathway as
anticancer agents. Anticancer Agents Med Chem. 13:1048–1056. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Li JP, Yang YX, Liu QL, Pan ST, He ZX,
Zhang X, Yang T, Chen XW, Wang D, Qiu JX and Zhou SF: The
investigational Aurora kinase A inhibitor alisertib (MLN8237)
induces cell cycle G2/M arrest, apoptosis, and autophagy via p38
MAPK and Akt/mTOR signaling pathways in human breast cancer cells.
Drug Des Devel Ther. 9:1627–1652. 2015.PubMed/NCBI
|
31
|
Henson SM, Lanna A, Riddell NE, Franzese
O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK,
Tooze SA and Akbar AN: p38 signaling inhibits mTORC1-independent
autophagy in senescent human CD8+ T cells. J Clin Invest.
124:4004–4016. 2014. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Liu J, Chang F, Li F, Fu H, Wang J, Zhang
S, Zhao J and Yin D: Palmitate promotes autophagy and apoptosis
through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun.
463:262–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Qin Y, Zhou ZW, Pan ST, He ZX, Zhang X,
Qiu JX, Duan W, Yang T and Zhou SF: Graphene quantum dots induce
apoptosis, autophagy, and inflammatory response via p38
mitogen-activated protein kinase and nuclear factor-κB mediated
signaling pathways in activated THP-1 macrophages. Toxicology.
327:62–76. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xiong XX, Liu JM, Qiu XY, Pan F, Yu SB and
Chen XQ: Piperlongumine induces apoptotic and autophagic death of
the primary myeloid leukemia cells from patients via activation of
ROS-p38/JNK pathways. Acta Pharmacol Sin. 36:362–374. 2015.
View Article : Google Scholar : PubMed/NCBI
|