1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kim KH and Choi YK: Long-term survival
after resection of hepatocellular carcinoma. Korean J Hepatobiliary
Pancreat Surg. 16:98–104. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shang N, Arteaga M, Zaidi A, Stauffer J,
Cotler SJ, Zeleznik-Le NJ, Zhang J and Qiu W: FAK is required for
c-Met/β-catenin-driven hepatocarcinogenesis. Hepatology.
61:214–226. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bruix J and Sherman M: Practice Guidelines
Committee, American Association for the Study of Liver Diseases:
Management of hepatocellular carcinoma. Hepatology. 42:1208–1236.
2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Clevers H: Wnt/beta-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao X and Guan JL: Focal adhesion kinase
and its signaling pathways in cell migration and angiogenesis. Adv
Drug Deliv Rev. 63:610–615. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Llovet JM, Ricci S, Mazzaferro V, Hilgard
P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A,
et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J
Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mitra SK, Hanson DA and Schlaepfer DD:
Focal adhesion kinase: In command and control of cell motility. Nat
Rev Mol Cell Biol. 6:56–68. 2005. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Schaller MD: Cellular functions of FAK
kinases: Insight into molecular mechanisms and novel functions. J
Cell Sci. 123:1007–1013. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao J and Guan JL: Signal transduction by
focal adhesion kinase in cancer. Cancer Metastasis Rev. 28:35–49.
2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Parsons JT: Focal adhesion kinase: The
first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Patil MA, Lee SA, Macias E, Lam ET, Xu C,
Jones KD, Ho C, Rodriguez-Puebla M and Chen X: Role of cyclin D1 as
a mediator of c-Met and beta-catenin induced hepatocarcinogenesis.
Cancer Res. 69:253–261. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tward AD, Jones KD, Yant S, Cheung ST, Fan
ST, Chen X, Kay MA, Wang R and Bishop JM: Distinct pathways of
genomic progression to benign and malignant tumors of the liver.
Proc Natl Acad Sci USA. 104:pp. 14771–14776. 2007; View Article : Google Scholar : PubMed/NCBI
|
14
|
Schlaepfer DD, Hauck CR and Sieg DJ:
Signaling through focal adhesion kinase. Prog Biophys Mol Biol.
71:435–478. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pylayeva Y, Gillen KM, Gerald W, Beggs HE,
Reichardt LF and Giancotti FG: Ras- and PI3K-dependent breast
tumorigenesis in mice and humans requires focal adhesion kinase
signaling. J Clin Invest. 119:252–266. 2009.PubMed/NCBI
|
16
|
Ashton GH, Morton JP, Myant K, Phesse TJ,
Ridgway RA, Marsh V, Wilkins JA, Athineos D, Muncan V, Kemp R, et
al: Focal adhesion kinase is required for intestinal regeneration
and tumorigenesis downstream of Wnt/c-Myc signaling. Dev Cell.
19:259–269. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee J, Borboa AK, Chun HB, Baird A and
Eliceiri BP: Conditional deletion of the focal adhesion kinase FAK
alters remodeling of the blood-brain barrier in glioma. Cancer Res.
70:10131–10140. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Itoh S, Maeda T, Shimada M, Aishima S,
Shirabe K, Tanaka S and Maehara Y: Role of expression of focal
adhesion kinase in progression of hepatocellular carcinoma. Clin
Cancer Res. 10:2812–2817. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fujii T, Koshikawa K, Nomoto S, Okochi O,
Kaneko T, Inoue S, Yatabe Y, Takeda S and Nakao A: Focal adhesion
kinase is overexpressed in hepatocellular carcinoma and can be
served as an independent prognostic factor. J Hepatol. 41:104–111.
2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kaposi-Novak P, Lee JS, Gòmez-Quiroz L,
Coulouarn C, Factor VM and Thorgeirsson SS: Met-regulated
expression signature defines a subset of human hepatocellular
carcinomas with poor prognosis and aggressive phenotype. J Clin
Invest. 116:1582–1595. 2006. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Cieply B, Zeng G, Proverbs-Singh T, Geller
DA and Monga SP: Unique phenotype of hepatocellular cancers with
exon-3 mutations in beta-catenin gene. Hepatology. 49:821–831.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Stauffer JK, Scarzello AJ, Andersen JB, De
Kluyver RL, Back TC, Weiss JM, Thorgeirsson SS and Wiltrout RH:
Coactivation of AKT and β-catenin in mice rapidly induces formation
of lipogenic liver tumors. Cancer Res. 71:2718–2727. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Edmondson HA and Steiner PE: Primary
carcinoma of the liver: A study of 100 cases among 48,900
necropsies. Cancer. 7:462–503. 1954. View Article : Google Scholar : PubMed/NCBI
|
24
|
Calabrese CT, Adam YG and Volk H:
Geriatric colon cancer. Am J Surg. 125:181–184. 1973. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ershler WB, Socinski MA and Greene CJ:
Bronchogenic cancer, metastases and aging. J Am Geriatr Soc.
31:673–676. 1983. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ershler WB: Why tumors grow more slowly in
old people. J Natl Cancer Inst. 77:837–839. 1986.PubMed/NCBI
|
27
|
Breuhahn K, Longerich T and Schirmacher P:
Dysregulation of growth factor signaling in human hepatocellular
carcinoma. Oncogene. 25:3787–3800. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Farazi PA and DePinho RA: Hepatocellular
carcinoma pathogenesis: From genes to environment. Nat Rev Cancer.
6:674–687. 2006. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Tabor E: Tumor suppressor genes, growth
factor genes, and oncogenes in hepatitis B virus-associated
hepatocellular carcinoma. J Med Virol. 42:357–365. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rogler CE and Chisari FV: Cellular and
molecular mechanisms of hepatocarcinogenesis. Semin Liver Dis.
12:265–278. 1992. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sung CO, Yoo BC, Koh KC, Cho JW and Park
CK: Prognostic significance of p53 overexpression after hepatic
resection of hepatocellular carcinoma. Korean J Gastroenterol.
45:425–430. 2005.PubMed/NCBI
|
32
|
Pang RW and Poon RT: From molecular
biology to targeted therapies for hepatocellular carcinoma: The
future is now. Oncology. 72 Suppl 1:S30–S44. 2007. View Article : Google Scholar
|
33
|
Llovet JM and Bruix J: Molecular targeted
therapies in hepatocellular carcinoma. Hepatology. 48:1312–1327.
2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
André E and Becker-André M: Expression of
an N-terminally truncated form of human focal adhesion kinase in
brain. Biochem Biophys Res Commun. 190:140–147. 1993. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fausto N, Campbell JS and Riehle KJ: Liver
regeneration. Hepatology. 43(2 Suppl 1): S45–S53. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schmidt L, Duh FM, Chen F, Kishida T,
Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, et al:
Germline and somatic mutations in the tyrosine kinase domain of the
MET proto-oncogene in papillary renal carcinomas. Nat Genet.
16:68–73. 1997. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schmidt L, Junker K, Weirich G, Glenn G,
Choyke P, Lubensky I, Zhuang Z, Jeffers M, Vande Woude G, Neumann
H, et al: Two North American families with hereditary papillary
renal carcinoma and identical novel mutations in the MET
proto-oncogene. Cancer Res. 58:1719–1722. 1998.PubMed/NCBI
|
38
|
Park WS, Dong SM, Kim SY, Na EY, Shin MS,
Pi JH, Kim BJ, Bae JH, Hong YK, Lee KS, et al: Somatic mutations in
the kinase domain of the Met/hepatocyte growth factor receptor gene
in childhood hepatocellular carcinomas. Cancer Res. 59:307–310.
1999.PubMed/NCBI
|
39
|
Ma PC, Kijima T, Maulik G, et al: c-MET
mutational analysis in small cell lung cancer: Novel juxtamembrane
domain mutations regulating cytoskeletal functions. Cancer Res.
63:6272–6281. 2003.PubMed/NCBI
|
40
|
Ma PC, Jagdeesh S, Jagadeeswaran R, Fox
EA, Christensen J, Maulik G, Naoki K, Schaefer E, Lader A, Richards
W, et al: c-MET expression/activation, functions and mutations in
non-small cell lung cancer. Proc Am Assoc Cancer Res. 44:pp.
18752004;
|
41
|
Lee JH, Han SU, Cho H, Jennings B, Gerrard
B, Dean M, Schmidt L, Zbar B and Vande Woude GF: A novel germ line
juxtamembrane Met mutation in human gastric cancer. Oncogene.
19:4947–4953. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Christensen JG, Burrows J and Salgia R:
c-Met as a target for human cancer and characterization of
inhibitors for therapeutic intervention. Cancer Lett. 225:1–26.
2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen Z, He X, Jia M, Liu Y, Qu D, Wu D, Wu
P, Ni C, Zhang Z, Ye J, et al: β-catenin overexpression in the
nucleus predicts progress disease and unfavourable survival in
colorectal cancer: A meta-analysis. PLoS One. 8:e638542013.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Gough NR: Focus issue: Wnt and
beta-catenin signaling in development and disease. Sci Signal.
5:eg22012.PubMed/NCBI
|
45
|
Inagawa S, Itabashi M, Adachi S, Kawamoto
T, Hori M, Shimazaki J, Yoshimi F and Fukao K: Expression and
prognostic roles of beta-catenin in hepatocellular carcinoma:
Correlation with tumor progression and postoperative survival. Clin
Cancer Res. 8:450–456. 2002.PubMed/NCBI
|
46
|
Liu L, Zhu XD, Wang WQ, Shen Y, Qin Y, Ren
ZG, Sun HC and Tang ZY: Activation of beta-catenin by hypoxia in
hepatocellular carcinoma contributes to enhanced metastatic
potential and poor prognosis. Clin Cancer Res. 16:2740–2750. 2010.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Lee JM, Yang J, Newell P, Singh S, Parwani
A, Friedman SL, Nejak-Bowen KN and Monga SP: β-Catenin signaling in
hepatocellular cancer: Implications in inflammation, fibrosis, and
proliferation. Cancer Lett. 343:90–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Jin J, Jung HY, Wang Y, Xie J, Yeom YI,
Jang JJ and Lee KB: Nuclear expression of phosphorylated TRAF2- and
NCK-interacting kinase in hepatocellular carcinoma is associated
with poor prognosis. Path Res Pract. 210:621–627. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zulehner G, Mikula M, Schneller D, van
Zijl F, Huber H, Sieghart W, Grasl-Kraupp B, Waldhör T,
Peck-Radosavljevic M, Beug H and Mikulits W: Nuclear beta-catenin
induces an early liver progenitor phenotype in hepatocellular
carcinoma and promotes tumor recurrence. Am J Pathol. 176:472–481.
2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liver cancer study group of Japan, . The
general rules for the clinical and pathological study of primary
liver cancer. 3rd. Kanehara Shuppan; Tokyo: 1992
|
51
|
Sumie S, Kuromatsu R, Okuda K, Ando E,
Takata A, Fukushima N, Watanabe Y, Kojiro M and Sata M:
Microvascular invasion in patients with hepatocellular carcinoma
and its predictable clinicopathological factors. Ann Surg Oncol.
15:1375–1382. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Minagawa M, Ikai I, Matsuyama Y, Yamaoka Y
and Makuuchi M: Staging of hepatocellular carcinoma: Assessment of
the Japanese TNM and AJCC/UICC TNM systems in a cohort of 13,772
patients in Japan. Ann Surg. 245:909–922. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Henderson J, Sherman M, Tavill A,
Abecassis M, Chejfec G and Gramlich T: AHPBA/AJCC consensus
conference on staging of hepatocellular carcinoma: Consensus
statement. HPB(Oxford). 5:243–250. 2003.PubMed/NCBI
|
54
|
Leung TW, Tang AM, Zee B, Lau WY, Lai PB,
Leung KL, Lau JT, Yu SC and Johnson PJ: Construction of the Chinese
University Prognostic Index for hepatocellular carcinoma and
comparison with the TNM staging system, the Okuda staging system,
and the Cancer of the Liver Italian Program staging system: A study
based on 926 patients. Cancer. 94:1760–1769. 2002. View Article : Google Scholar : PubMed/NCBI
|