Advances in the mechanisms of action of cancer-targeting oncolytic viruses (Review)
- Authors:
- Cun‑Zhi Lin
- Gui‑Ling Xiang
- Xin‑Hong Zhu
- Lu‑Lu Xiu
- Jia‑Xing Sun
- Xiao‑Yuan Zhang
-
Affiliations: Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China, Department of General Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China - Published online on: January 19, 2018 https://doi.org/10.3892/ol.2018.7829
- Pages: 4053-4060
This article is mentioned in:
Abstract
Bell J and McFadden G: Viruses for tumor therapy. Cell Host Microbe. 15:260–265. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fukuhara H, Ino Y and Todo T: Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 107:1373–1379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu TC, Galanis E and Kirn D: Clinical trial results with oncolytic virotherapy: A century of promise, a decade of progress. Nat Clin Pract Oncol. 4:101–117. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T, Landers S, Maples P, Romel L, Randlev B, et al: Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: A phase II trial. Cancer Res. 60:6359–6366. 2000.PubMed/NCBI | |
Ruf B and Lauer UM: Assessment of current virotherapeutic application schemes: ‘Hit hard and early’ versus ‘killing softly’? Mol Ther Oncolytics. 4:150182015. View Article : Google Scholar | |
Breitbach CJ, Lichty BD and Bell JC: Oncolytic viruses: Therapeutics with an identity crisis. EBioMedicine. 9:31–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cross D and Burmester JK: Gene therapy for cancer treatment: Past, present and future. Clini Med Res. 4:218–227. 2006. View Article : Google Scholar | |
Liu TC and Kirn D: Gene therapy progress and prospects cancer: Oncolytic viruses. Gene Ther. 15:877–884. 2008. View Article : Google Scholar : PubMed/NCBI | |
Russell SJ, Peng KW and Bell JC: Oncolytic virotherapy. Nat Biotechnol. 30:658–670. 2012. View Article : Google Scholar : PubMed/NCBI | |
Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, Haluska P Jr, Long HJ, Oberg A, Aderca I, et al: Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res. 75:22–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ilkow CS, Swift SL, Bell JC and Diallo JS: From scourge to cure: Tumour-selective viral pathogenesis as a new strategy against cancer. PLoS Pathog. 10:e10038362014. View Article : Google Scholar : PubMed/NCBI | |
Cattaneo R, Miest T, Shashkova EV and Barry MA: Reprogrammed viruses as cancer therapeutics: Targeted, armed and shielded. Nature Rev Microbiol. 6:529–540. 2008. View Article : Google Scholar | |
Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH and Wimmer E: Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci the USA. 97:pp. 6803–6808. 2000; View Article : Google Scholar | |
Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD and Gromeier M: Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 6:208–217. 2004. View Article : Google Scholar : PubMed/NCBI | |
Blasi F and Carmeliet P: uPAR: A versatile signalling orchestrator. Nat Rev Mol Cell Biol. 3:932–943. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lester RD, Jo M, Montel V, Takimoto S and Gonias SL: uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol. 178:425–436. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Zaias J, Duncan R, Russell SJ and Merchan JR: In vivo safety, biodistribution and antitumor effects of uPAR retargeted oncolytic measles virus in syngeneic cancer models. Gene Ther. 21:289–297. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sato D, Kurihara Y, Kondo S, Shirota T, Urata Y, Fujiwara T and Shintani S: Antitumor effects of telomerase-specific replication-selective oncolytic viruses for adenoid cystic carcinoma cell lines. Oncol Rep. 30:2659–2664. 2013. View Article : Google Scholar : PubMed/NCBI | |
Longo SL, Griffith C, Glass A, Shillitoe EJ and Post DE: Development of an oncolytic herpes simplex virus using a tumor-specific HIF-responsive promoter. Cancer Gene Ther. 18:123–134. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Zhang Y, Chang G and Zhang J: Comparison of prostate-specific promoters and the use of PSP-driven virotherapy for prostate cancer. Biomed Res Int. 2013:6246322013. View Article : Google Scholar : PubMed/NCBI | |
Zhang KJ, Zhang J, Wu YM, Qian J, Liu XJ, Yan LC, Zhou XM, Xiao RJ, Wang YG, Cao X, et al: Complete eradication of hepatomas using an oncolytic adenovirus containing AFP promoter controlling E1A and an E1B deletion to drive IL-24 expression. Cancer Gene Ther. 19:619–629. 2012. View Article : Google Scholar : PubMed/NCBI | |
Verdun RE and Karlseder J: Replication and protection of telomeres. Nature. 447:924–931. 2007. View Article : Google Scholar : PubMed/NCBI | |
Giandomenico V, Thirlwell C and Essand M: Other Novel Therapies: Biomarkers, microRNAs and microRNA inhibitors, DNA methylation, epigenetics, immunotherapy and virotherapy. Front Horm Res. 44:248–262. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ruiz AJ and Russell SJ: MicroRNAs and oncolytic viruses. Curr Opin Virol. 13:40–48. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Guo G, Zhang Q, Fan L, Wu N and Bo Y: The application of multiple miRNA response elements enables oncolytic adenoviruses to possess specificity to glioma cells. Virology. 458–459, 1-82. 2014. | |
Negrini M, Ferracin M, Sabbioni S and Croce CM: MicroRNAs in human cancer: From research to therapy. J Cell Sci. 120:1833–1840. 2007. View Article : Google Scholar : PubMed/NCBI | |
Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T and Shimotohno K: Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 25:2537–2545. 2006. View Article : Google Scholar : PubMed/NCBI | |
Callegari E, Elamin BK, D'Abundo L, Falzoni S, Donvito G, Moshiri F, Milazzo M, Altavilla G, Giacomelli L, Fornari F, et al: Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PLoS One. 8:e739642013. View Article : Google Scholar : PubMed/NCBI | |
Indraccolo S: Interferon-alpha as angiogenesis inhibitor: Learning from tumor models. Autoimmunity. 43:244–247. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kotredes KP and Gamero AM: Interferons as inducers of apoptosis in malignant cells. J Interferon Cytokine Res. 33:162–170. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balachandran S and Barber GN: Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life. 50:135–138. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ahmed M, Cramer SD and Lyles DS: Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses. Virology. 330:34–49. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stewart JH IV, Ahmed M, Northrup SA, Willingham M and Lyles DS: Vesicular stomatitis virus as a treatment for colorectal cancer. Cancer Gene Ther. 18:837–849. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bradner JE: Cancer: An essential passenger with p53. Nature. 520:626–627. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C and Feng Z: Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai). 46:170–179. 2014. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ, Synnott NC, McGowan PM, Crown J, O'Connor D and Gallagher WM: p53 as a target for the treatment of cancer. Cancer Treat Rev. 40:1153–1160. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A and McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 274:373–376. 1996. View Article : Google Scholar : PubMed/NCBI | |
Garber K: China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 98:298–300. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cheng PH, Wechman SL, McMasters KM and Zhou HS: Oncolytic replication of E1b-Deleted adenoviruses. Viruses. 7:5767–5779. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song X, Zhou Y, Jia R, Xu X, Wang H, Hu J, Ge S and Fan X: Inhibition of retinoblastoma in vitro and in vivo with conditionally replicating oncolytic adenovirus H101. Invest Ophthalmol Vis Sci. 51:2626–2635. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu W and Fang H: Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets. 7:141–148. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kaneda Y: A non-replicating oncolytic vector as a novel therapeutic tool against cancer. BMB Rep. 43:773–780. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gil-Farina I, Di Scala M, Vanrell L, Olagüe C, Vales A, High KA, Prieto J, Mingozzi F and Gonzalez-Aseguinolaza G: IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression. PLoS One. 8:e677482013. View Article : Google Scholar : PubMed/NCBI | |
Guse K, Sloniecka M, Diaconu I, Ottolino-Perry K, Tang N, Ng C, Le Boeuf F, Bell JC, McCart JA, Ristimäki A, et al: Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models. J Virol. 84:856–866. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jeyaretna DS and Kuroda T: Recent advances in the development of oncolytic HSV-1 vectors: ‘Arming’ of HSV-1 vectors and application of bacterial artificial chromosome technology for their construction. Curr Opin Mol Ther. 9:447–466. 2007.PubMed/NCBI | |
Tsun A, Miao XN, Wang CM and Yu DC: Oncolytic immunotherapy for treatment of cancer. Adv Exp Med Biol. 909:241–283. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, Springfeld C, Jaeger D, von Kalle C and Ungerechts G: Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther. 24:644–654. 2013. View Article : Google Scholar : PubMed/NCBI | |
Choi IK, Lee JS, Zhang SN, Park J, Sonn CH, Lee KM and Yun CO: Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther. 18:898–909. 2011. View Article : Google Scholar : PubMed/NCBI | |
van Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, Doerr HW and Cinatl J Jr: Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS One. 7:e365062012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Peng KW, Dingli D, Kratzke RA and Russell SJ: Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther. 17:550–558. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang CJ, Xiao CW, You TG, Zheng YX, Gao W, Zhou ZQ, Chen J, Xue XB, Fan J and Zhang H: Interferon-α enhances antitumor activities of oncolytic adenovirus-mediated IL-24 expression in hepatocellular carcinoma. Mol Cancer. 11:312012. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Zeng Q, Xu C, Shi S, Zhang Z and Sun X: Enhanced antitumor response mediated by the codelivery of paclitaxel and adenoviral vector expressing IL-12. Mol Pharm. 10:1804–1814. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gollob JA, Mier JW, Veenstra K, McDermott DF, Clancy D, Clancy M and Atkins MB: Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: Ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res. 6:1678–1692. 2000.PubMed/NCBI | |
Lasek W, Zagożdżon R and Jakobisiak M: Interleukin 12: Still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother. 63:419–435. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tomura M, Zhou XY, Maruo S, Ahn HJ, Hamaoka T, Okamura H, Nakanishi K, Tanimoto T, Kurimoto M and Fujiwara H: A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3-cells. J Immunol. 160:4738–4746. 1998.PubMed/NCBI | |
Chen C, Fang H, Han Z, Ye F, Ji T, Gong D, Li F, Zhou J, Ma D and Gao Q: Novel permissive murine immunocompetent orthotopic colon carcinoma model for comparison of the antitumoral and safety profiles of three Adv-TKs. Gene Ther. 22:702015. View Article : Google Scholar : PubMed/NCBI | |
Graepler F, Lemken ML, Wybranietz WA, Schmidt U, Smirnow I, Gross CD, Spiegel M, Schenk A, Graf H, Lauer UA, et al: Bifunctional chimeric SuperCD suicide gene-YCD: YUPRT fusion is highly effective in a rat hepatoma model. World J Gastroenterol. 11:6910–6919. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lampe J, Bossow S, Weiland T, Smirnow I, Lehmann R, Neubert W, Bitzer M and Lauer UM: An armed oncolytic measles vaccine virus eliminates human hepatoma cells independently of apoptosis. Gene Ther. 20:1033–1041. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moriuchi S, Wolfe D, Tamura M, Yoshimine T, Miura F, Cohen JB and Glorioso JC: Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model. Gene Ther. 9:584–591. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yamada S, Kuroda T, Fuchs BC, He X, Supko JG, Schmitt A, McGinn CM, Lanuti M and Tanabe KK: Oncolytic herpes simplex virus expressing yeast cytosine deaminase: Relationship between viral replication, transgene expression, prodrug bioactivation. Cancer Gene Ther. 19:160–170. 2012. View Article : Google Scholar : PubMed/NCBI | |
Redaelli M, Franceschi V, Capocefalo A, D'Avella D, Denaro L, Cavirani S, Mucignat-Caretta C and Donofrio G: Herpes simplex virus type 1 thymidine kinase-armed bovine herpesvirus type 4-based vector displays enhanced oncolytic properties in immunocompetent orthotopic syngenic mouse and rat glioma models. Neuro Oncol. 14:288–301. 2012. View Article : Google Scholar : PubMed/NCBI | |
Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L and Schaeffer HJ: Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci USA. 74:pp. 5716–5720. 1977; View Article : Google Scholar : PubMed/NCBI | |
Boucher PD, Ostruszka LJ and Shewach DS: Synergistic enhancement of herpes simplex virus thymidine kinase/ganciclovir-mediated cytoxicity by hydroxyurea. Cancer Res. 60:1631–1636. 2000.PubMed/NCBI | |
Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL and Abraham GN: The ‘bystander effect’: Tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53:5274–5283. 1993.PubMed/NCBI | |
Hong JS, Waud WR, Levasseur DN, Townes TM, Wen H, McPherson SA, Moore BA, Bebok Z, Allan PW, Secrist JA III, et al: Excellent in vivo bystander activity of fludarabine phosphate against human glioma xenografts that express the escherichia coli purine nucleoside phosphorylase gene. Cancer Res. 64:6610–6615. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leveille S, Samuel S, Goulet ML and Hiscott J: Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther. 18:435–443. 2011. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6. 1990. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, et al: Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 35 Suppl:S224–S243. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR and Folkman J: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell. 88:277–285. 1997. View Article : Google Scholar : PubMed/NCBI | |
O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, Moses M, Lane WS, Sage EH and Folkman J: Angiostatin: A circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol. 59:471–482. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hutzen B, Bid HK, Houghton PJ, Pierson CR, Powell K, Bratasz A, Raffel C and Studebaker AW: Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer. 14:2062014. View Article : Google Scholar : PubMed/NCBI | |
Shin SU, Cho HM, Merchan J, Zhang J, Kovacs K, Jing Y, Ramakrishnan S and Rosenblatt JD: Targeted delivery of an antibody-mutant human endostatin fusion protein results in enhanced antitumor efficacy. Mol Cancer Ther. 10:603–614. 2011. View Article : Google Scholar : PubMed/NCBI | |
Refaat A, Abd-Rabou A and Reda A: TRAIL combinations: The new ‘trail’ for cancer therapy (Review). Oncol Lett. 7:1327–1332. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lichty BD, Breitbach CJ, Stojdl DF and Bell JC: Going viral with cancer immunotherapy. Nat Rev Cancer. 14:559–567. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hao C, Song JH, Hsi B, Lewis J, Song DK, Petruk KC, Tyrrell DL and Kneteman NM: TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res. 64:8502–8506. 2004. View Article : Google Scholar : PubMed/NCBI | |
Poutou J, Bunuales M, Gonzalez-Aparicio M, Garcia-Aragoncillo E, Quetglas JI, Casado R, Bravo-Perez C, Alzuguren P and Hernandez-Alcoceba R: Safety and antitumor effect of oncolytic and helper-dependent adenoviruses expressing interleukin-12 variants in a hamster pancreatic cancer model. Gene Ther. 22:696–706. 2015. View Article : Google Scholar : PubMed/NCBI | |
El-Shemi AG, Ashshi AM, Na Y, Li Y, Basalamah M, Al-Allaf FA, Oh E, Jung BK and Yun CO: Combined therapy with oncolytic adenoviruses encoding TRAIL and IL-12 genes markedly suppressed human hepatocellular carcinoma both in vitro and in an orthotopic transplanted mouse model. J Exp Clin Cancer Res. 35:742016. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Liu X, Huang W and Liu XY: Synergistic antitumor effect of TRAIL and IL-24 with complete eradication of hepatoma in the CTGVT-DG strategy. Acta Biochim Biophys Sin (Shanghai). 44:535–543. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Lee S, Je S, Eom CY, Choi HJ, Song JJ and Kim JH: Survivin silencing and TRAIL expression using oncolytic adenovirus increase anti-tumorigenic activity in gemcitabine-resistant pancreatic cancer cells. Apoptosis. 21:351–364. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Cao X, Wei R, Cai Y, Li H, Gui J, Zhong D, Liu XY and Huang K: Gene-viro-therapy targeting liver cancer by a dual-regulated oncolytic adenoviral vector harboring IL-24 and TRAIL. Cancer Gene Ther. 19:49–57. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhu Y, Huang X, Ai K, Zheng Q and Yuan Z: Gene therapy targeting hepatocellular carcinoma by a dual-regulated oncolytic adenovirus harboring the focal adhesion kinase shRNA. Int J Oncol. 47:668–678. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lawler SE, Speranza MC, Cho CF and Chiocca EA: Oncolytic viruses in cancer treatment: A review. JAMA Oncol. 3:841–849. 2017. View Article : Google Scholar : PubMed/NCBI | |
Warner SG, O'Leary MP and Fong Y: Therapeutic oncolytic viruses: Clinical advances and future directions. Curr Opin Oncol. 29:359–365. 2017. View Article : Google Scholar : PubMed/NCBI |