Early mortality in acute promyelocytic leukemia: Potential predictors (Review)
- Authors:
- Can Chen
- Xilian Huang
- Kaile Wang
- Kuang Chen
- Danquan Gao
- Shenxian Qian
-
Affiliations: Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China - Published online on: January 24, 2018 https://doi.org/10.3892/ol.2018.7854
- Pages: 4061-4069
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tallman MS and Altman JK: How I treat acute promyelocytic leukemia. Blood. 114:5126–5135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR and Sultan C: A variant form of hypergranular promyelocytic leukaemia (M3). Br J Haematol. 44:169–170. 1980. View Article : Google Scholar : PubMed/NCBI | |
Cooperberg AA and Neiman GM: Fibrinogenopenia and fibrinolysis in acute myelogenous leukemia. Ann Intern Med. 42:706–711. 1955. View Article : Google Scholar : PubMed/NCBI | |
Van Creveld S and Mochtar IA: Fibrinolysis in acute leukemia. Maandschr Kindergeneeskd. 27:133–44. 1959.(In Dutch). PubMed/NCBI | |
Ghitis J: Acute promyelocytic leukemia? Blood. 21:237–240. 1963.PubMed/NCBI | |
Larson RA, Kondo K, Vardiman JW, Butler AE, Golomb HM and Rowley JD: Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med. 76:827–841. 1984. View Article : Google Scholar : PubMed/NCBI | |
Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Woods WG, Ogden A, Weinstein H, Shepherd L, Willman C, et al: All-trans retinoic acid in acute promyelocytic leukemia: Long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood. 100:4298–4302. 2002. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Qiao B, Panageas KS, Schymura MJ, Jurcic JG, Rosenblat TL, Altman JK, Douer D, Rowe JM and Tallman MS: Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood. 118:1248–1254. 2011. View Article : Google Scholar : PubMed/NCBI | |
Watts JM and Tallman MS: Acute promyelocytic leukemia: What is the new standard of care? Blood Rev. 28:205–212. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iland HJ, Bradstock K, Supple SG, Catalano A, Collins M, Hertzberg M, Browett P, Grigg A, Firkin F, Hugman A, et al: All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood. 120:1570–1580. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matthews W, Jordan CT, Wiegand GW, Pardoll D and Lemischka IR: A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 65:1143–1152. 1991. View Article : Google Scholar : PubMed/NCBI | |
Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, Kaspers GJ, Heerema NA, Gerbing R, Lange BJ and Radich JP: Clinical implications of FLT3 mutations in pediatric AML. Blood. 108:3654–3661. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M, Neubauer A, et al: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 99:4326–4335. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, et al: The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 98:1752–1759. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shih LY, Kuo MC, Liang DC, Huang CF, Lin TL, Wu JH, Wang PN, Dunn P and Lai CL: Internal tandem duplication and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene in acute promyelocytic leukemia. Cancer. 98:1206–1216. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stock W, Najib K, Moser BK, Powell BL, Holowka N, Gulati K, Bloomfield CD, Larson RA and Sher D: High incidence of FLT3 mutations in adults with acute promyelocytic leukemia (APL): Correlation with diagnostic features and treatment outcome (CALGB 9710). J Clin Oncol. 26 15 Suppl:S70022008. View Article : Google Scholar | |
Souza Melo CP, Campos CB, Dutra ÁP, Neto JC, Fenelon AJ, Neto AH, Carbone EK, Pianovski MA, Ferreira AC and Assumpcão JG: Correlation between FLT3-ITD status and clinical, cellular and molecular profiles in promyelocytic acute leukemias. Leuk Res. 39:131–137. 2015. View Article : Google Scholar : PubMed/NCBI | |
Au WY, Fung A, Chim CS, Lie AK, Liang R, Ma ES, Chan CH, Wong KF and Kwong YL: FLT-3, aberrations in acute promyelocytic leukaemia: Clinicopathological associations and prognostic impact. Br J Haematol. 125:463–469. 2004. View Article : Google Scholar : PubMed/NCBI | |
Callens C, Chevret S, Cayuela JM, Cassinat B, Raffoux E, de Botton S, Thomas X, Guerci A, Fegueux N, Pigneux A, et al: Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): A retrospective study from the European APL Group. Leukemia. 19:1153–1160. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, Nugent E, Mills KI, Wheatley K, Solomon E, et al: Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 106:3768–3776. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chillón MC, Santamaría C, García-Sanz R, Balanzategui A, Sarasquete ME, Alcoceba M, Marín L, Caballero MD, Vidriales MB, Ramos F, et al: Long FLT3 internal tandem duplications and reduced PML-RARα expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients. Haematologica. 95:745–751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K, Takeshita A, Saito K, Hasegawa S, Shimodaira S, et al: Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia study group of the ministry of health and welfare (Kohseisho). Leukemia. 11:1447–1452. 1997. View Article : Google Scholar : PubMed/NCBI | |
Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, Avvisati G, Pinazzi MB, Petti MC, Mandelli F and Lo Coco F: Alterations of the FLT3 gene in acute promyelocytic leukemia: Association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 16:2185–2189. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mathews V, Thomas M, Srivastava VM, George B, Srivastava A and Chandy M: Impact of FLT3 mutations and secondary cytogenetic changes on the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with a single agent arsenic trioxide regimen. Haematologica. 92:994–995. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schnittger S, Bacher U, Haferlach C, Kern W, Alpermann T and Haferlach T: Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica. 96:1799–1807. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lucena-Araujo AR, Kim HT, Jacomo RH, Melo RA, Bittencourt R, Pasquini R, Pagnano K, Fagundes EM, Chauffaille Mde L, Chiattone CS, et al: Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: An international consortium on acute promyelocytic leukemia study. Ann Hematol. 93:2001–2010. 2014. View Article : Google Scholar : PubMed/NCBI | |
Poiré X, Moser BK, Gallagher RE, Laumann K, Bloomfield CD, Powell BL, Koval G, Gulati K, Holowka N, Larson RA, et al: Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): Prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma. 55:1523–1532. 2014. View Article : Google Scholar : PubMed/NCBI | |
Daver N, Kantarjian H, Marcucci G, Pierce S, Brandt M, Dinardo C, Pemmaraju N, Garcia-Manero G, O'Brien S, Ferrajoli A, et al: Clinical characteristics and outcomes in patients with acute promyelocytic leukaemia and hyperleucocytosis. Br J Haematol. 168:646–653. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T, Weltermann A, Fonatsch C, Haas OA, Mannhalter C, et al: Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J. 3:283–289. 2002. View Article : Google Scholar : PubMed/NCBI | |
Barragán E, Montesinos P, Camos M, González M, Calasanz MJ, Román-Gómez J, Gómez-Casares MT, Ayala R, López J, Fuster Ó, et al: Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy. Haematologica. 96:1470–1477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Breccia M, Loglisci G, Loglisci MG, Ricci R, Diverio D, Latagliata R, Foà R and Lo-Coco F: FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: Long-term follow-up analysis. Haematologica. 98:e161–e163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Beitinjaneh A, Jang S, Roukoz H and Majhail NS: Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: A systematic review. Leuk Res. 34:831–836. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM, Li JM, Tang W, Zhao WL, Wu W, et al: Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA. 106:pp. 3342–3347. 2009; View Article : Google Scholar : PubMed/NCBI | |
Shaft D, Shtalrid M, Berebi A, Catovsky D and Resnitzky P: Ultrastructural characteristics and lysozyme content in hypergranular and variant type of acute promyelocytic leukaemia. Br J Haematol. 103:729–739. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, Broccia G, Cerri R, Falda M, Fioritoni G, et al: Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood. 90:1014–1021. 1997.PubMed/NCBI | |
McKenna RW, Parkin J, Bloomfield CD, Sundberg RD and Brunning RD: Acute promyelocytic leukaemia: A study of 39 cases with identification of a hyperbasophilic microgranular variant. Br J Haematol. 50:201–214. 1982. View Article : Google Scholar : PubMed/NCBI | |
Tallman MS, Kim HT, Montesinos P, Appelbaum FR, de la Serna J, Bennett JM, Deben G, Bloomfield CD, Gonzalez J, Feusner JH, et al: Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood. 116:5650–5659. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kutny MA, Moser BK, Laumann K, Feusner JH, Gamis A, Gregory J, Larson RA, Powell BL, Stock W, Willman CL, et al: FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: A report from the Children's Oncology Group. Pediatr Blood Cancer. 59:662–667. 2012. View Article : Google Scholar : PubMed/NCBI | |
Biondi A, Luciano A, Bassan R, Mininni D, Specchia G, Lanzi E, Castagna S, Cantù-Rajnoldi A, Liso V, Masera G, et al: CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia. 9:1461–1466. 1995.PubMed/NCBI | |
Foley R, Soamboonsrup P, Carter RF, Benger A, Meyer R, Walker I, Wan Y, Patterson W, Orzel A, Sunisloe L, et al: CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. Am J Hematol. 67:34–41. 2001. View Article : Google Scholar : PubMed/NCBI | |
Paietta E, Goloubeva O, Neuberg D, Bennett JM, Gallagher R, Racevskis J, Dewald G, Wiernik PH and Tallman MS; Eastern Cooperative Oncology Group, : A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry B Clin Cytom. 59:1–9. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maslak P, Miller WH Jr, Heller G, Scheinberg DA, Dmitrovsky E and Warrell RP Jr: CD2 expression and PML/RAR-alpha transcripts in acute promyelocytic leukemia. Blood. 81:16661993.PubMed/NCBI | |
Reading CL, Estey EH, Huh YO, Claxton DF, Sanchez G, Terstappen LW, O'Brien MC, Baron S and Deisseroth AB: Expression of unusual immunophenotype combinations in acute myelogenous leukemia. Blood. 81:3083–3090. 1993.PubMed/NCBI | |
Claxton DF, Reading CL, Nagarajan L, Tsujimoto Y, Andersson BS, Estey E, Cork A, Huh YO, Trujillo J and Deisseroth AB: Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood. 80:582–586. 1992.PubMed/NCBI | |
Albano F, Mestice A, Pannunzio A, Lanza F, Martino B, Pastore D, Ferrara F, Carluccio P, Nobile F, Castoldi G, et al: The biological characteristics of CD34+ CD2+ adult acute promyelocytic leukemia and the CD34 CD2 hypergranular (M3) and microgranular (M3v) phenotypes. Haematologica. 91:311–316. 2006.PubMed/NCBI | |
Guglielmi C, Martelli MP, Diverio D, Fenu S, Vegna ML, Cantù-Rajnoldi A, Biondi A, Cocito MG, Del Vecchio L, Tabilio A, et al: Immunophenotype of adult and childhood acute promyelocytic leukaemia: Correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol. 102:1035–1041. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gallagher RE, Willman CL, Slack JL, Andersen JW, Li YP, Viswanatha D, Bloomfield CD, Appelbaum FR, Schiffer CA, Tallman MS and Wiernik PH: Association of PML-RAR alpha fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: An intergroup molecular study. Blood. 90:1656–1663. 1997.PubMed/NCBI | |
Davey FR, Davis RB, MacCallum JM, Nelson DA, Mayer RJ, Ball ED, Griffin JD, Schiffer CA and Bloomfield CD: Morphologic and cytochemical characteristics of acute promyelocytic leukemia. Am J Hematol. 30:221–227. 1989. View Article : Google Scholar : PubMed/NCBI | |
Bassan R, Battista R, Viero P, d'Emilio A, Buelli M, Montaldi A, Rambaldi A, Tremul L, Dini E and Barbui T: Short-term treatment for adult hypergranular and microgranular acute promyelocytic leukemia. Leukemia. 9:238–243. 1995.PubMed/NCBI | |
Cunningham I, Gee TS, Reich LM, Kempin SJ, Naval AN and Clarkson BD: Acute promyelocytic leukemia: Treatment results during a decade at Memorial Hospital. Blood. 73:1116–1122. 1989.PubMed/NCBI | |
Kuchenbauer F, Schoch C, Kern W, Hiddemann W, Haferlach T and Schnittger S: Impact of FLT3, mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br J Haematol. 130:196–202. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM, Abrams TJ, O'Farrell AM, Gilliland DG, Le Beau MM and Kogan SC: A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood. 101:3188–3197. 2003. View Article : Google Scholar : PubMed/NCBI | |
Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern W and Schoch C: AML M3 and AML M3 variant each have a distinct gene expression signature but also share patterns different from other genetically defined AML subtypes. Genes Chromosomes Cancer. 43:113–127. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marasca R, Maffei RP, Zucchini P, Castelli I, Saviola A, Martinelli S, Ferrari A, Fontana M, Ravanetti S and Torelli G: Gene expression profiling of acute promyelocytic leukaemia identifies two subtypes mainly associated with flt3 mutational status. Leukemia. 20:103–114. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, et al: Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 97:2434–2439. 2001. View Article : Google Scholar : PubMed/NCBI | |
Baer MR, Stewart CC, Lawrence D, Arthur DC, Byrd JC, Davey FR, Schiffer CA and Bloomfield CD: Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood. 90:1643–1648. 1997.PubMed/NCBI | |
Montesinos P, Rayón C, Vellenga E, Brunet S, González J, González M, Holowiecka A, Esteve J, Bergua J, González JD, et al: Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood. 117:1799–1805. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ferrara F, Morabito F, Martino B, Specchia G, Liso V, Nobile F, Boccuni P, Di Noto R, Pane F, Annunziata M, et al: CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol. 18:1295–1300. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Ishida Y, Oyake T, Satoh M, Aoki Y, Kowata S, Uchiyama T, Enomoto S, Sugawara T, Numaoka H, et al: Clinical and biological significance of CD56 antigen expression in acute promyelocytic leukemia. Leuk Lymphoma. 45:1783–1789. 2004. View Article : Google Scholar : PubMed/NCBI | |
Murray CK, Estey E, Paietta E, Howard RS, Edenfield WJ, Pierce S, Mann KP, Bolan C and Byrd JC: CD56 expression in acute promyelocytic leukemia: A possible indicator of poor treatment outcome? J Clin Oncol. 17:293–297. 1999. View Article : Google Scholar : PubMed/NCBI | |
Breccia M, De Propris MS, Minotti C, Stefanizzi C, Raponi S, Colafigli G, Latagliata R, Guarini A and Foà R: Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients. Leuk Res. 38:194–197. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, Estey EH, Dombret H, Chevret S, Ifrah N, et al: Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 15:986–996. 2014. View Article : Google Scholar : PubMed/NCBI | |
Breccia M, De Propris MS, Stefanizzi C, Raponi S, Molica M, Colafigli G, Minotti C, Latagliata R, Diverio D, Guarini A and Foà R: Negative prognostic value of CD34 antigen also if expressed on a small population of acute promyelocitic leukemia cells. Ann Hematol. 93:1819–1823. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paietta E: Expression of cell-surface antigens in acute promyelocytic leukaemia. Best Pract Res Clin Haematol. 16:369–385. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Yin CX, Wang CL, Jiang XJ, Jiang L, Wang ZX, Yi ZS, Huang KK and Meng FY: Immunophenotypes and immune markers associated with acute promyelocytic leukemia prognosis. Dis Markers. 2014:4219062014. View Article : Google Scholar : PubMed/NCBI | |
Ahmad EI, Akl HK, Hashem ME and Elgohary TA: The biological characteristics of adult CD34+ acute promyelocytic leukemia. Med Oncol. 29:1119–1126. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grimwade D, Outram SV, Flora R, Ings SJ, Pizzey AR, Morilla R, Craddock CF, Linch DC and Solomon E: The T-lineage-affiliated CD2 gene lies within an open chromatin environment in acute promyelocytic leukemia cells. Cancer Res. 62:4730–4735. 2002.PubMed/NCBI | |
Sunter NJ, Scott K, Hills R, Grimwade D, Taylor S, Worrillow LJ, Fordham SE, Forster VJ, Jackson G, Bomken S, et al: A functional variant in the core promoter of the CD95 cell death receptor gene predicts prognosis in acute promyelocytic leukemia. Blood. 119:196–205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rowley JD, Golomb HM and Dougherty C: 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet. 1:549–550. 1977. View Article : Google Scholar : PubMed/NCBI | |
Grimwade D, Biondi A, Mozziconacci MJ, et al: Characterisation of acute promyelocytic leukaemia (APL) cases lacking the classical t(15;17). Results of the European working party. 92:677A. 1998. | |
Schoch C, Haferlach T, Haase D, Fonatsch C, Löffler H, Schlegelberger B, Staib P, Sauerland MC, Heinecke A, Büchner T, et al: Patients with de novo, acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: A study of 90 patients. Br J Haematol. 112:118–126. 2001. View Article : Google Scholar : PubMed/NCBI | |
Grimwade D, Howe K, Langabeer S, Davies L, Oliver F, Walker H, Swirsky D, Wheatley K, Goldstone A, Burnett A and Solomon E: Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: Cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. ATRA trial. Br J Haematol. 94:557–573. 1996.PubMed/NCBI | |
De Botton S, Chevret S, Sanz M, Dombret H, Thomas X, Guerci A, Fey M, Rayon C, Huguet F, Sotto JJ, et al: Additional chromosomal abnormalities in patients with acute promyelocytic leukaemia (APL) do not confer poor prognosis: Results of APL 93 trial. Br J Haematol. 111:801–806. 2000. View Article : Google Scholar : PubMed/NCBI | |
Slack JL, Arthur DC, Lawrence D, Mrózek K, Mayer RJ, Davey FR, Tantravahi R, Pettenati MJ, Bigner S, Carroll AJ, et al: Secondary cytogenetic changes in acute promyelocytic leukemia-Prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene: A cancer and leukemia group B study. J Clin Oncol. 15:1786–1795. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mi Y, Xue Y, Yu W, Liu S, Zhao Y, Meng Q, Bian S and Wang J: Therapeutic experience of adult acute myeloid leukemia in a single institution of China and its relationship with chromosome karyotype. Leuk Lymphoma. 49:524–530. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pantic M, Novak A, Marisavljevic D, Djordjevic V, Elezovic I, Vidovic A and Colovic M: Additional chromosome aberrations in acute promyelocytic leukemia: Characteristics and prognostic influence. Med Oncol. 17:307–313. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona E, et al: Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 369:112–21. 2013. View Article : Google Scholar | |
Samir MD, Pedro H and Ling Z: Tetraploidy acute promyelocytic leuemia with double t(15;17)/PML-RARA, a case report with review of literature. Genes Chromosomes Cancer. 46:635–643. 2007.PubMed/NCBI | |
Neto WK, Serpa M, Sanabani SS, Bueno PT, Velloso ED, Dorlhiac-Llacer PE and Bendit I: Early detection of t(8;21) chromosomal translocations during treatment of PML-RARA positive acute promyelocytic leukemia: A case study. Clin Med Insights Oncol. 4:163–170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Charrin C, Ritouet D, Campos L, Devaux Y, Archimbaud E, Fraisse J, Fiere D and Germain D: Association of t(15;17) and t(8;21) in the initial phase of an acute promyelocytic leukemia. Cancer Genet Cytogenet. 58:177–180. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bonomi R, Giordano H, del Pilar Moreno M, Bodega E, Landoni AI, Gallagher R and del Rosario Uriarte M: Simultaneous PML/RARalpha and AML1/ETO expression with t(15;17) at onset and relapse with only t(8;21) in an acute promyelocytic leukemia patient. Cancer Genet Cytogenet. 123:41–43. 2000. View Article : Google Scholar : PubMed/NCBI | |
Varella-Garcia M, Brizard F, Roche J, Flandrin G, Drabkin H and Brizard A: Aml1/ETO and Pml/RARA rearrangements in a case of AML-M2 acute myeloblastic leukemia with t(15;17). Leuk Lymphoma. 33:403–406. 2009. View Article : Google Scholar | |
Xu L, Zhao WL, Xiong SM, Su XY, Zhao M, Wang C, Gao YR, Niu C, Cao Q, Gu BW, et al: Molecular cytogenetic characterization and clinical relevance of additional, complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia. 15:1359–1368. 2001. View Article : Google Scholar : PubMed/NCBI | |
Uz B, Eliaçık E, Işık A, Aksu S, Büyükaşık Y, Haznedaroğlu IC, Göker H, Sayınalp N and Ozcebe Oİ: Co-expression of t(15;17) and t(8;21) in a case of acute Promyelocytic leukemia: Review of the literature. Turk J Haematol. 30:400–404. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Ai G, Meng X, Hou J, Wei R, Tao Y, Zhang Q, Han Y and Shi J: An ider(17)(q10)t(15;17) with spliced long-type PML-RARA fusion transcripts in a case of acute promyelocytic leukemia. Cancer Genet. 207:253–257. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee GY, Christina S, Tien SL, Ghafar AB, Hwang W, Lim LC and Lim TH: Acute promyelocytic leukemia with PML-RARA fusion on i(17q) and therapy-related acute myeloid leukemia. Cancer Genet Cytogenet. 159:129–136. 2005. View Article : Google Scholar : PubMed/NCBI | |
Im SA, Kim SH, Lee MA, Ahn JY, Yoo ES, Choi DY, Lee JY, Lee S, Huh JW, Chung WS, et al: Identification of ider[17q] in addition to t[15;17] in acute promyelocytic leukemia using whole chromosome painting probes made by interspecies hybrid using inter-Alu PCR. Cancer Genet Cytogenet. 118:169–170. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Cho SY, Lim G, Yoon HS, Lee HJ, Suh JT, Lee J, Lee WI, Cho KS and Park TS: A rare case of Microgranular acute Promyelocytic leukemia associated with ider(17)(q10)t(15;17) in an old-age patient. Korean J Lab Med. 31:86–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Lee SA, Park HI, Oh EJ, Park CW, Lim J, Han K and Kim Y: Two distinct clonal populations in acute promyelocytic leukemia, one involving chromosome 17 and the other involving an isochromosome 17. Cancer Genet Cytogenet. 197:185–188. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Yoon HS, Cho SY, Lee HJ, Suh JT, Lee J, Yoon HJ, Lee WI and Park TS: ider(17)(q10)t(15;17) associated with relapse and poor prognosis in a pediatric patient with acute promyelocytic leukemia. Cancer Genet Cytogenet. 201:116–121. 2010. View Article : Google Scholar : PubMed/NCBI | |
Manola KN, Karakosta M, Sambani C, Terzoudi G, Pagoni M, Gatsa E and Papaioannou M: Isochromosome der(17)(q10)t(15;17) in acute promyelocytic leukemia resulting in an additional copy of the RARA-PML fusion gene: Report of 4 cases and review of the literature. Acta Haematol. 123:162–170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okoshi Y, Akiyama H, Kono N, Matsumura T, Mizuchi D, Mori S, Ohashi K and Sakamaki H: Effect of additional chromosomal abnormalities in acute promyelocytic leukemia treated with all-trans-retinoic acid: A report of 17 patients. Int J Hematol. 73:496–501. 2001. View Article : Google Scholar : PubMed/NCBI | |
Qiu HR, Li JY, Miao KR, Wang R and Xu W: Clinical and laboratory studies of an acute promyelocytic leukemia patient with double ider(17q) chromosome aberration. Cancer Genet Cytogenet. 184:74–75. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schoch C, Haase D, Haferlach T, Freund M, Link H, Lengfelder E, Löffler H, Büchner T and Fonatsch C: Incidence and implication of additional chromosome aberrations in acute promyelocytic leukaemia with translocation t(15;17)(q22;q21): A report on 50 patients. Br J Haematol. 94:493–500. 2015. View Article : Google Scholar | |
Tong H, Li K, Mei C, Wang H, Chen Z and Jin J: Arsenic trioxide may improve the prognosis of APL with ider(17)(q10): Report of a rare adult case of acute promyelocytic leukemia with ider(17)(q10)t(15;17) showing poor response to all-trans retinoic acid. Ann Hematol. 90:1493–1494. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wan TS, So CC, Hui KC, Yip SF, Ma ES and Chan LC: Diagnostic utility of dual fusion PML/RARalpha translocation DNA probe (D-FISH) in acute promyelocytic leukemia. Oncol Rep. 17:799–805. 2007.PubMed/NCBI | |
Sainty D, Liso V, Cantù-Rajnoldi A, Head D, Mozziconacci MJ, Arnoulet C, Benattar L, Fenu S, Mancini M, Duchayne E, et al: A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood. 96:1287–1296. 2000.PubMed/NCBI | |
Tan Y, Bian S, Xu Z, Chen X, Qi X, Ren F, Li L, Guo H, Xu A, Zhang L and Wang H: The short isoform of the long-type PML-RARA, fusion gene in acute promyelocytic leukaemia lacks sensitivity to all-trans-retinoic acid. Br J Haematol. 162:93–97. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T, Negrini M, Martelli MF and Mecucci C: NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood. 99:3857–3860. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ågerstam H, Lilljebjörn H, Lassen C, Swedin A, Richter J, Vandenberghe P, Johansson B and Fioretos T: Fusion gene-mediated truncation of RUNX1, as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer. 46:635–643. 2007. View Article : Google Scholar : PubMed/NCBI | |
Otero L, Terra B, Diniz C, Abdelhay E and Fernandez Tde S: Dicentric t(8;13)(q10;q10) as an additional chromosomal abnormality in a case of acute promyelocytic leukemia with very poor outcome. Leuk Lymphoma. 50:287–289. 2009. View Article : Google Scholar : PubMed/NCBI | |
Adams J and Nassiri M: Acute promyelocytic Leukemia: A review and discussion of variant translocations. Arch Pathol Lab Med. 139:1308–1313. 2015. View Article : Google Scholar : PubMed/NCBI | |
Corey SJ, Locker J, Oliveri DR, Shekhter-Levin S, Redner RL, Penchansky L and Gollin SM: A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia. 8:1350–1353. 1994.PubMed/NCBI | |
Yamanouchi J, Hato T, Niiya T, Miyoshi K, Azuma T, Sakai I and Yasukawa M: A new four-way variant t(5;17;15;20)(q33;q12;q22;q11.2) in acute promyelocytic leukemia. Int J Hematol. 94:395–398. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qiu HR, Li JY, Miao KR, Wang R, Zhang JF and Xu W: A case of acute promyelocytic leukemia with variant t(5;17) and trisomy 22. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 25:430–433. 2008.(In Chinese). PubMed/NCBI | |
Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S, et al: In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest. 115:755–764. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ross DA and Kadesch T: The notch intracellular domain can function as a coactivator for LEF-1. Mol Cell Biol. 21:7537–7544. 2001. View Article : Google Scholar : PubMed/NCBI | |
Holland JD, Klaus A, Garratt AN and Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI | |
Petropoulos K, Arseni N, Schessl C, Stadler CR, Rawat VP, Deshpande AJ, Heilmeier B, Hiddemann W, Quintanilla-Martinez L, Bohlander SK, et al: A novel role for Lef-1, a central transcription mediator of Wnt signaling, in leukemogenesis. J Exp Med. 205:515–522. 2008. View Article : Google Scholar : PubMed/NCBI | |
Skokowa J, Cario G, Uenalan M, Schambach A, Germeshausen M, Battmer K, Zeidler C, Lehmann U, Eder M, Baum C, et al: LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med. 12:1191–1197. 2006. View Article : Google Scholar : PubMed/NCBI | |
Albano F, Zagaria A, Anelli L, Orsini P, Minervini CF, Impera L, Casieri P, Coccaro N, Tota G, Brunetti C, et al: Lymphoid enhancer binding factor-1 (LEF1) expression as a prognostic factor in adult acute promyelocytic leukemia. Oncotarget. 5:649–658. 2014. View Article : Google Scholar : PubMed/NCBI | |
Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, Sargin B, Köhler G, Stelljes M, Puccetti E, et al: Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol. 24:2890–2904. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu J, Shi C, Huang Y, Wang Y, Yang T and Yang J: Lef1 contributes to the differentiation of bulge stem cells by nuclear translocation and cross-talk with the Notch signaling pathway. Int J Med Sci. 10:738–746. 2013. View Article : Google Scholar : PubMed/NCBI | |
Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA and Ley TJ: High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest. 119:1714–1726. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C, et al: Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest. 112:1751–1761. 2003. View Article : Google Scholar : PubMed/NCBI | |
Avvisati G, Lo-Coco F, Paoloni FP, Petti MC, Diverio D, Vignetti M, Latagliata R, Specchia G, Baccarani M, Di Bona E, et al: AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: Very long-term results and role of maintenance. Blood. 117:4716–4725. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lo-Coco F, Avvisati G, Vignetti M, Breccia M, Gallo E, Rambaldi A, Paoloni F, Fioritoni G, Ferrara F, Specchia G, et al: Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: Results of the AIDA-2000 trial of the GIMEMA Group. Blood. 116:3171–3179. 2010. View Article : Google Scholar : PubMed/NCBI |