1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mehlen P and Puisieux A: Metastasis: a
question of life or death. Nat Rev Cancer. 6:449–458. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Ihde DC: Chemotherapy of lung cancer. N
Engl J Med. 327:1434–1441. 1992. View Article : Google Scholar : PubMed/NCBI
|
4
|
Stewart DJ: Tumor and host factors that
may limit efficacy of chemotherapy in non-small cell and small cell
lung cancer. Crit Rev Oncol Hematol. 75:173–234. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Reka AK, Goswami MT, Krishnapuram R,
Standiford TJ and Keshamouni VG: Molecular cross-regulation between
PPAR-γ and other signaling pathways: Implications for lung cancer
therapy. Lung Cancer. 72:154–159. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fidler IJ and Kripke ML: Metastasis
results from preexisting variant cells within a malignant tumor.
Science. 197:893–895. 1977. View Article : Google Scholar : PubMed/NCBI
|
7
|
Halbersztadt A, Halon A, Pajak J,
Rabczynski J and St Gabrys M: The role of matrix metalloproteinases
in tumor invasion and metastasis. Ginekol Pol. 77:63–71.
2006.PubMed/NCBI
|
8
|
Chuang CH, Liu CH, Lu TJ and Hu ML:
Suppression of alpha-tocopherol ether-linked acetic acid in
VEGF-induced angiogenesis and the possible mechanisms in human
umbilical vein endothelial cells. Toxicol Appl Pharmacol.
281:310–316. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Birkedal-Hansen H: Proteolytic remodeling
of extracellular matrix. Curr Opin Cell Biol. 7:728–735. 1995.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Liotta LA, Tryggvason K, Garbisa S, Hart
I, Foltz CM and Shafie S: Metastatic potential correlates with
enzymatic degradation of basement membrane collagen. Nature.
284:67–68. 1980. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Liabakk NB, Talbot I, Smith RA, Wilkinson
K and Balkwill F: Matrix metalloprotease 2 (MMP-2) and matrix
metalloprotease 9 (MMP-9) type IV collagenases in colorectal
cancer. Cancer Res. 56:190–196. 1996.PubMed/NCBI
|
12
|
Qian Q, Wang Q, Zhan P, Peng L, Wei SZ,
Shi Y and Song Y: The role of matrix metalloproteinase 2 on the
survival of patients with non-small cell lung cancer: A systematic
review with meta-analysis. Cancer Invest. 28:661–669. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Steeg PS, Bevilacqua G, Kopper L,
Thorgeirsson UP, Talmadge JE, Liotta LA and Sobel ME: Evidence for
a novel gene associated with low tumor metastatic potential. J Nati
Cancer Inst. 80:200–204. 1988. View Article : Google Scholar
|
14
|
Leone A, Flatow U, King CR, Sandeen MA,
Margulies IM, Liotta LA and Steeg PS: Reduced tumor incidence,
metastatic potential, and cytokine responsiveness of
NM23-transfected melanoma cells. Cell. 65:25–35. 1991. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu F, Zhang Y, Zhang XY and Chen HL:
Transfection of the nm23-H1 gene into human hepatocarcinoma cell
line inhibits the expression of sialyl Lewis X, alpha 1,3
fucosyltransferase VII, and metastatic potential. J Cancer Cancer
Res Clin Oncol. 128:189–196. 2002. View Article : Google Scholar
|
16
|
Khan MH, Yasuda M, Higashino F, Haque S,
Kohgo T, Nakamura M and Shindoh M: Nm23-H1 suppresses invasion of
oral sqamous cell carcinoma-derived cell lines without modifying
matrix metalloproteinase-2 and matrix metalloproteinase-9
expression. Am J Pathol. 158:1785–1791. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yokdang N, Nordmeier S, Speirs K, Burkin
HR and Buxton IL: Blockade of extracellular NM23 or its endothelial
target slows breast cancer growth and metastasis. Integr Cancer Sci
Ther. 2:192–200. 2015.PubMed/NCBI
|
18
|
Boissan M and Lacombe ML: Nm23, an example
of a metastasis suppressor gene. Bull Cancer. 99:431–440.
2012.PubMed/NCBI
|
19
|
Boissan M, De Wever O, Lizarraga F, Wendum
D, Poincloux R, Chignard N, Desbois-Mouthon C, Dufour S,
Nawrocki-Raby B and Birembaut P: Implication of metastasis
suppressor NM23-H1in maintaining adherens junctions and limiting
the invasive potential of human cancer cells. Cancer Res.
70:7710–7722. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
You J, Chang R, Liu B, Zu L and Zhou Q:
Nm23-H1 was involved in regulation of KAI1 expression in
high-metastatic lung cancer cells L9981. J Thorac Dis. 8:1217–1226.
2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu YB, Gao SL, Chen XP, Peng SY, Fang HQ,
Wu YL, Peng CH, Tang Z, Xu B, Wang JW, et al: Expression and
significance of heparanase and NM23-H1 in hepatocellular carcinoma.
World J Gastroenterol. 11:1378–1381. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Luo Y, Liu M, Yao X, Xia Y, Dai Y, Chou G
and Wang Z: Total alkaloids from Radix Linderae prevent the
production of inflammatory mediators in
lipopolysaccharide-stimulated RAW 264.7 cells by suppressing
NF-kappaB and MAPKs activation. Cytokine. 46:104–110. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Li YM, Ohno Y, Minatoguchi S, Fukuda K,
Ikoma T, Ohno T, Akao S, Takemura G, Gotou K and Fujiwara H:
Extracts from the roots of Lindera strychifolia induces apoptosis
in lung cancer cells and prolongs survival of tumor-bearing mice.
Am J Chin Med. 31:857–869. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gan LS, Zheng YL, Mo JX, Liu X, Li XH and
Zhou CX: Sesquiterpene lactones from the root tubers of Lindera
aggregata. J Nat Prod. 72:1497–1501. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin CT, Chu FH, Chang ST, Chueh PJ, Su YC,
Wu KT and Wang SY: Secoaggregatalactone-A from Lindera aggregate
induces apoptosis in Human Hepatoma Hep G2 Cells. Planta Med.
73:1548–1553. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ohno T, Nagatsu A, Nakagawa M, Inoue M, Li
YM, Minatoguchi S, Mizukami H and Fujiwara H: New sesquiterpene
lactones from water extract of the root of Lindera strychnifolia
with cytotoxicity against the human small cell lung cancer cell,
SBC-3. Tetrahedron Lett. 46:8657–8660. 2005. View Article : Google Scholar
|
27
|
Yen MC, Shih YC, Hsu YL, Lin ES, Lin YS,
Tsai EM, Ho YW, Hou MF and Kuo PL: Isolinderalactone enhances the
inhibition of SOCS3 on STAT3 activity by decreasing miR-30c in
breast cancer. Oncol Rep. 35:1356–1364. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chang WA, Lin ES, Tsai MJ, Huang MS and
Kuo PL: Isolinderalactone inhibits proliferation of A549 human
non-small cell lung cancer cells by arresting the cell cycle at the
G0/G1 phase and inducing a Fas receptor and soluble Fas
ligand-mediated apoptotic pathway. Mol Med Rep. 9:1653–1659. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ahmad A, Sayed A, Ginnebaugh KR, Sharma V,
Suri A, Saraph A, Padhye S and Sarkar FH: Molecular docking and
inhibition of matrix metalloproteinase-2 by novel
difluorinatedbenzylidene curcumin analog. Am J Transl Res.
7:298–308. 2015.PubMed/NCBI
|
30
|
Kumar D, Kumar M, Saravanan C and Singh
SK: Curcumin: A potential candidate for matrix metalloproteinase
inhibitors. Expert Opin Ther Targets. 6:959–972. 2012. View Article : Google Scholar
|
31
|
Yeh SL, Yeh CL, Chan ST and Chuang CH:
Plasma rich in quercetin metabolites induces G2/M arrest
by upregulating PPAR-γ expression in human A549 lung cancer cells.
Planta Medica. 77:992–998. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pettit GR, Hoard MS, Doubek DL, Schmidt
JM, Pettit RK, Tackett LP and Chapuis JC: Antineoplastic agents
338. The cancer cell growth inhibitory. Constituents of Terminnalia
arjuna (Combretaceae). J Ethnopharmacol. 53:57–63. 1996. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tholudur A, Giron L, Alam K, Thomas T,
Garr E, Weatherly G, Kulowiec K, Quick M and Shepard S: Comparing
automated and manual cell counts for cell culture applications. Bio
Process Int. 28–34. 2006.
|
34
|
Repesh LA: A new in vitro assay for
quantitating tumor cell invasion. Invasion Metastasis. 9:192–208.
1989.PubMed/NCBI
|
35
|
Chuang CH, Yeh CL, Yeh SL, Lin ES, Wang LY
and Wang YH: Quercetin metabolites inhibit MMP-2 expression in A549
lung cancer cells by PPAR-γ associated mechanisms. J Nutr Biochem.
33:45–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hwang HJ, Park HJ, Chung HJ, Min HY, Park
EJ, Hong JY and Lee SK: Inhibitory effects of caffeic acid
phenethyl ester on cancer cell metastasis mediated by the
down-regulation of matrix metalloproteinase expression in human
HT1080 fibrosarcoma cells. J Nutr Biochem. 17:356–362. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Blois MS: Antioxidant determinations by
the use of a stable freeradical. Nature. 26:1199–1200. 1958.
View Article : Google Scholar
|
38
|
Lin ES, Yang CT, Chou HJ and Chang TT:
Screening of antioxidant activities by the edible Basidiomycete
Antrodia cinnamomea strains in submerged culture. J Food Biochem.
34:1141–1156. 2010. View Article : Google Scholar
|
39
|
Ak T and Gülçin I: Antioxidant and radical
scavenging properties of curcumin. Chem Biol Interact. 174:27–37.
2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Marino N, Nakayama J, Collins JW and Steeg
PS: Insights into the biology and prevention of tumor metastasis
provided by the Nm23 metastasis suppressor gene. Cancer Metastasis
Rev. 31:593–603. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Crocker SJ, Pagenstecher A and Campbell
IL: The TIMPs tango with MMPs and more in the central nervous
system. J Neurosci Res. 75:1–11. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ohba K, Miyata Y, Koga S, Kand S and
Kanetake H: Expression of nm23-H1 gene product in sarcomatous
cancer cells of renal cell carcinoma: Correlation with tumor stage
and expression of matrix metalloproteinase-2, matrix
metalloproteinase-9, sialyl Lewis X, and c-erbB-2. Urology.
65:1029–1034. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Che G, Chen J, Liu L, Wang Y, Li L, Qin Y
and Zhou Q: Transfection of NM23-H1 increased expression of
β-Catenin, E-Cadherin and TIMP-1 and decreased the expression of
MMP-2, CD44v6 and VEGF and inhibited the metastatic potential of
human non-small cell lung cancer cell line L9981. Neoplasma.
53:530–537. 2006.PubMed/NCBI
|
44
|
Khan MH, Yasuda M, Higashino F, Haque S,
Kohgo T, Nakamura M and Shindoh M: Nm23-H1 suppresses invasion of
oral sqamous cell carcinoma-derived cell line without modifying
matrix metalloproteinase-2 and matrix metalloproteinase-9
expression. Am J Pathol. 158:1785–1791. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang PH, Yang SF, Chen GD, Han CP, Chen
SC, Lin LY and Ko JL: Human nonmetastatic clone 23 type 1 gene
suppresses migration of cervical cancer cells and enhances the
migration inhibition of fungal immunomodulatory protein from
Ganoderma tsugae. Reprod Sci. 14:475–485. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang LB, Jiang ZN, Fan MY, Xu CY, Chen WJ
and Shen JG: Changes of histology and expression of MMP-2 and
nm23-H1 in primary and metastatic gastric cancer. World J
Gastroenterol. 14:1612–1616. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhao R, Gong L, Li L, Guo L, Zhu D, Wu Z
and Zhou Q: NM23-H1is a negative regulator of TGF-β1-dependent
induction of epithelial-mesenchymal transition. Exp Cell Res.
319:740–749. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Vaid M, Prasad R, Sun Q and Katiyar SK:
Silymarin targets β-catenin signaling in blocking
migration/invasion of human melanoma cells. PLoS One. 6:e230002011.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang L, Li L, Wei H, Guo L, Ai C, Xu H,
Wu Z and Zhou Q: Transcriptional factor FOXO3 negatively regulates
the expression of NM23-H1 in non-small cell lung cancer. Thorac
Cancer. 7:9–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gong L, Wu Z, Guo L, Li L, Zhao R, Zhu D
and Zhou Q: Metastasis suppressor Nm23-H1 inhibits STAT3 signaling
via a negative feedback mechanism. Biochem Biophys Res Commun.
434:541–546. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Szatrowski TP and Nathan CF: Production of
large amounts of hydrogen peroxide by human tumor cells. Cancer
Res. 51:794–798. 1991.PubMed/NCBI
|
52
|
Ak T and Gülçin I: Antioxidant and radical
scavenging properties of curcumin. Chem Biol Interact. 174:27–37.
2008. View Article : Google Scholar : PubMed/NCBI
|