1
|
Mutwiri G: TLR9 agonists: Immune
mechanisms and therapeutic potential in domestic animals. Vet
Immunol Immunopathol. 148:85–89. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yoneda K, Sugimoto K, Shiraki K, Tanaka J,
Beppu T, Fuke H, Yamamoto N, Masuya M, Horie R, Uchida K and Takei
Y: Dual topology of functional Toll-like receptor 3 expression in
human hepatocellular carcinoma: Differential signaling mechanisms
of TLR3-induced NF-kappaB activation and apoptosis. Int J Oncol.
33:929–936. 2008.PubMed/NCBI
|
3
|
He H, Genovese KJ, Swaggerty CL, Nisbet DJ
and Kogut MH: Differential induction of nitric oxide,
degranulation, and oxidative burst activities in response to
microbial agonist stimulations in monocytes and heterophils from
young commercial turkeys. Vet Immunol Immunopathol. 123:177–185.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang H, Rayburn ER, Wang W, Kandimalla ER,
Agrawal S and Zhang R: Chemotherapy and chemosensitization of
non-small cell lung cancer with a novel immunomodulatory
oligonucleotide targeting Toll-like receptor 9. Mol Cancer Ther.
5:1585–1592. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Holtick U, Scheulen ME, von
Bergwelt-Baildon MS and Weihrauch MR: Toll-like receptor 9 agonists
as cancer therapeutics. Expert Opin Investig Drugs. 20:361–372.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Petrangolini G, Tortoreto M, Perego P,
Carenini N, De Cesare M, Balsari A, Zunino F and Pratesi G:
Combination of metronomic gimatecan and CpG oligodeoxynucleotides
against an orthotopic pancreatic cancer xenograft. Cancer Biol
Ther. 7:596–601. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brignole C, Marimpietri D, Di Paolo D,
Perri P, Morandi F, Pastorino F, Zorzoli A, Pagnan G, Loi M, Caffa
I, et al: Therapeutic targeting of TLR9 inhibits cell growth and
induces apoptosis in neuroblastoma. Cancer Res. 70:9816–9826. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Droemann D, Albrecht D, Gerdes J, Ulmer
AJ, Branscheid D, Vollmer E, Dalhoff K, Zabel P and Goldmann T:
Human lung cancer cells express functionally active Toll-like
receptor 9. Respir Res. 6:12005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu HQ, Wang B, Zhu SK, Tian Y, Zhang JH
and Wu HS: Effects of CPG ODN on biological behavior of PANC-1 and
expression of TLR9 in pancreatic cancer. World J Gastroenterol.
17:996–1003. 2011.PubMed/NCBI
|
10
|
Tuomela J, Sandholm J, Karihtala P,
Ilvesaro J, Vuopala KS, Kauppila JH, Kauppila S, Chen D, Pressey C,
Härkönen P, et al: Low TLR9 expression defines an aggressive
subtype of triple-negative breast cancer. Breast Cancer Res Treat.
135:481–493. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kundu SD, Lee C, Billips BK, Habermacher
GM, Zhang Q, Liu V, Wong LY, Klumpp DJ and Thumbikat P: The
toll-like receptor pathway: A novel mechanism of infection induced
carcinogenesis of prostate epithelial cells. Prostate. 68:223–229.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chang JH, Park JY and Kim SK: Dependence
on p38 MAPK signalling in the up-regulation of TLR2, TLR4 and TLR9
gene expression in Trichomonas vaginalis-treated HeLa cells.
Immunology. 118:164–170. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
De Amicis F, Giordano F, Vivacqua A,
Pellegrino M, Panno ML, Tramontano D, Fuqua SA and Andò S:
Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation,
inhibits estrogen receptor gene expression via p38MAPK/CK2
signaling in human breast cancer cells. FASEB J. 25:3695–3707.
2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Riazantseva NV, Novitskiĭ VV, Kaĭgorodova
EV, Chasovskikh NIu and Starikova EG: Mitogenactivated protein
kinases JNK and p38 as redox-dependent molecular targets correction
of programmed cell death disturbances in oxidative stress
condition. Usp Fiziol Nauk. 40:3–11. 2009.(In Russian). PubMed/NCBI
|
15
|
Zha L, Qiao T, Yuan S and Lei L:
Enhancement of radiosensitivity by
CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung
cancer A549 cells. Cancer Biother Radiopharm. 25:165–170. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Yan L, Xu G, Qiao T, Chen W, Yuan S and Li
X: CpG-ODN 7909 increases radiation sensitivity of
radiation-resistant human lung adenocarcinoma cell line by
overexpression of Toll-like receptor 9. Cancer Biother Radiopharm.
28:559–564. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu XQ, Qiao TK, Chen W and Yuan SJ: Role
of ATM kinase in the effect of CpG-oligodeoxynucleotide-7909 on
X-ray-induced G2/M phase arrest and apoptosis in A549 cells. Chin J
Radiol Med Prot. 3:270–273. 2012.(In Chinese).
|
18
|
Viadiu H, Fronza G and Inga A: Structural
studies on mechanisms to activate mutant p53. Subcell Biochem.
85:119–32. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Merino D and Malkin D: p53 and hereditary
cancer. Subcell Biochem. 85:1–16. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Khan I, Garikapati KR, Shaik AB, Makani
VKK, Rahim A, Shareef MA, Reddy VG, Pal-Bhadra M, Kamal A and Kumar
CG: Design, synthesis and biological evaluation of 1, 4-dihydro
indeno[1,2-c] pyrazole linked oxindole analogues as potential
anticancer agents targeting tubulin and inducing p53 dependent
apoptosis. Eur J Med Chem. 144:104–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Parvathaneni S, Lu X, Chaudhary R, Lal A,
Madhusudan S and Sharma S: RECQ1 expression is upregulated in
response to DNA damage and in a p53-dependent manner. Oncotarget.
8:75924–75942. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Spring E and Holmberg P: Evaluation of
experimental irradiation fractionation with the single-hit,
multi-target model. Acta Radiol Ther Phys Biol. 7:297–306. 1968.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang L, Wu X, Wan M, Yu Y, Yu Y and Wang
L: CpG oligodeoxynucleotides with double stem-loops show strong
immunostimulatory activity. Int Immunopharmacol. 15:89–96. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Sommariva M, de Cesare M, Meini A, Cataldo
A, Zaffaroni N, Tagliabue E and Balsari A: High efficacy of
CpG-ODN, cetuximab and cisplatin combination for very advanced
ovarian xenograft tumors. J Transl Med. 11:252013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang S, Liu X, Qiao T and Zhang Q:
Radiosensitization by CpG ODN7909 in an epidermoid laryngeal
carcinoma Hep-2 cell line. J Int Med Res. 45:2009–2022. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sfondrini L, Sommariva M, Tortoreto M,
Meini A, Piconese S, Calvaruso M, Van Rooijen N, Bonecchi R,
Zaffaroni N, Colombo MP, et al: Anti-tumor activity of CpG-ODN
aerosol in mouse lung metastases. Int J Cancer. 133:383–393. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Xing N, Qiao T, Zhuang X, Yuan S, Zhang Q
and Xu G: CpG oligodeoxyribonucleotide 7909 enhances
radiosensitivity via downregulating Oct-4 expression in
radioresistant lung cancer cells. Onco Targets Ther. 8:1443–1449.
2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Honda K, Yanai H, Mizutani T, Negishi H,
Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh WC and Taniguchi T:
Role of a transductional-transcriptional processor complex
involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc
Natl Acad Sci USA. 101:pp. 15416–15421. 2004; View Article : Google Scholar : PubMed/NCBI
|
29
|
Hong MY, Gao JL, Cui JZ, Wang KJ, Tian YX,
Li R, Wang HT and Wang H: Effect of c-Jun NH2-terminal
kinase-mediated p53 expression on neuron autophagy following
traumatic brain injury in rats. Chin Med J (Engl). 125:2019–2024.
2012.PubMed/NCBI
|
30
|
Johnson GL and Lapadat R:
Mitogen-activated protein kinase pathways mediated by ERK, JNK, and
p38 protein kinases. Science. 298:1911–1912. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Strittmatter F, Gratzke C, Walther S,
Göttinger J, Beckmann C, Roosen A, Schlenker B, Reich O, Stief CG
and Hennenberg M: Alpha1-adrenoceptor signaling in the human
prostate involves regulation of p38 mitogen-activated protein
kinase. Urology. 78:969.e7–e13. 2011. View Article : Google Scholar
|
32
|
Aloni-Grinstein R, Schwartz D and Rotter
V: Accumulation of wild-type p53 protein upon gamma-irradiation
induces a G2 arrest-dependent immunoglobulin kappa light chain gene
expression. EMBO J. 14:1392–1401. 1995.PubMed/NCBI
|
33
|
Liu R, Ji P, Liu B, Qiao H, Wang X, Zhou
L, Deng T and Ba Y: Apigenin enhances the cisplatin cytotoxic
effect through p53-modulated apoptosis. Oncol Lett. 13:1024–1030.
2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang P, Cui J, Wen J, Guo Y, Zhang L and
Chen X: Cisplatin induces HepG2 cell cycle arrest through targeting
specific long noncoding RNAs and the p53 signaling pathway. Oncol
Lett. 12:4605–4612. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Vellanki SH, Grabrucker A, Liebau S,
Proepper C, Eramo A, Braun V, Boeckers T, Debatin KM and Fulda S:
Small-molecule XIAP inhibitors enhance gamma-irradiation-induced
apoptosis in glioblastoma. Neoplasia. 11:743–752. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Borges HL, Chao C, Xu Y, Linden R and Wang
JY: Radiation-induced apoptosis in developing mouse retina exhibits
dose-dependent requirement for ATM phosphorylation of p53. Cell
Death Differ. 11:494–502. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rossé T, Olivier R, Monney L, Rager M,
Conus S, Fellay I, Jansen B and Borner C: Bcl-2 prolongs cell
survival after Bax-induced release of cytochrome c. Nature.
391:496–499. 1998. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Guo B, Zhai D, Cabezas E, Welsh K,
Nouraini S, Satterthwait AC and Reed JC: Humanin peptide suppresses
apoptosis by interfering with Bax activation. Nature. 423:456–461.
2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Arafat W, Zhou T, Naoum GE and Buchsbaum
DJ: Targeted radiotherapy potentiates the cytotoxicity of a novel
anti-human DR5 monoclonal antibody and the adenovirus encoding
soluble TRAIL in prostate cancer. J Egypt Natl Canc Inst.
27:205–215. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Torricelli C, Salvadori S, Valacchi G,
Souček K, Slabáková E, Muscettola M, Volpi N and Maioli E:
Alternative pathways of cancer cell death by rottlerin: Apoptosis
versus autophagy. Evid Based Complement Alternat Med.
2012:9806582012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Murphy M, Mabruk MJ, Lenane P, Liew A,
McCann P, Buckley A, Billet P, Leader M, Kay E and Murphy GM: The
expression of p53, p21, Bax and induction of apoptosis in normal
volunteers in response to different doses of ultraviolet radiation.
Br J Dermatol. 147:110–117. 2002. View Article : Google Scholar : PubMed/NCBI
|