1
|
El-Serag HB: Epidemiology of viral
hepatitis and hepatocellular carcinoma. Gastroenterology.
142:1264–1273.e1261. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sawyers CL, Abate-Shen C, Anderson KC,
Barker A, Baselga J, Berger NA, Foti M, Jemal A, Lawrence TS, Li
CI, et al: AACR Cancer progress report 2013. Clin Cancer Res.
19:S4–98. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang FS, Liu MX, Zhang B, Shi M, Lei ZY,
Sun WB, Du QY and Chen JM: Antitumor activities of human autologous
cytokine-induced killer (CIK) cells against hepatocellular
carcinoma cells in vitro and in vivo. World J Gastroenterol.
8:464–468. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li XD, Xu B, Wu J, Ji M, Xu BH, Jiang JT
and Wu CP: Review of Chinese clinical trials on CIK cell treatment
for malignancies. Clin Transl Oncol:. 14:102–108. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume
KG and Weissman IL: Use of a SCID mouse/human lymphoma model to
evaluate cytokine-induced killer cells with potent antitumor cell
activity. J Exp Med. 174:139–149. 1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen L: Co-inhibitory molecules of the
B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol.
4:336–347. 2004. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Freeman GJ, Long AJ, Iwai Y, Bourque K,
Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T and
Byrne MC: Engagement of the PD-1 immunoinhibitory receptor by a
novel B7 family member leads to negative regulation of lymphocyte
activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bengsch B, Martin B and Thimme R:
Restoration of HBV-specific CD8+ T cell function by PD-1 blockade
in inactive carrier patients is linked to T cell differentiation. J
Hepatol. 61:1212–1219. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Boni C, Fisicaro P, Valdatta C, Amadei B,
Di Vincenzo P, Giuberti T, Laccabue D, Zerbini A, Cavalli A,
Missale G, et al: Characterization of hepatitis B virus
(HBV)-specific T-cell dysfunction in chronic HBV infection. J
Virol. 81:4215–4225. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fisicaro P, Valdatta C, Massari M, Loggi
E, Biasini E, Sacchelli L, Cavallo MC, Silini EM, Andreone P,
Missale G and Ferrari C: Antiviral intrahepatic T-cell responses
can be restored by blocking programmed death-1 pathway in chronic
hepatitis B. Gastroenterology. 138:682–693, 693.e1-4. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Mühlbauer M, Fleck M, Schütz C, Weiss T,
Froh M, Blank C, Schölmerich J and Hellerbrand C: PD-L1 is induced
in hepatocytes by viral infection and by interferon-alpha and
-gamma and mediates T cell apoptosis. J Hepatol. 45:520–528. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Peng G, Li S, Wu W, Tan X, Chen Y and Chen
Z: PD-1 upregulation is associated with HBV-specific T cell
dysfunction in chronic hepatitis B patients. Mol Immunol.
45:963–970. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tzeng HT, Tsai HF, Liao HJ, Lin YJ, Chen
L, Chen PJ and Hsu PN: PD-1 blockage reverses immune dysfunction
and hepatitis B viral persistence in a mouse animal model. PloS
One. 7:e391792012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ye P, Weng ZH, Zhang SL, Zhang JA, Zhao L,
Dong JH, Jie SH, Pang R and Wei RH: Programmed death-1 expression
is associated with the disease status in hepatitis B virus
infection. World J Gastroenterol. 14:4551–4557. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hamid O, Robert C, Daud A, Hodi FS, Hwu
WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al:
Safety and tumor responses with lambrolizumab (anti-PD-1) in
melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Topalian SL, Sznol M, McDermott DF, Kluger
HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB,
Powderly JD, et al: Survival, durable tumor remission, and
long-term safety in patients with advanced melanoma receiving
nivolumab. J Clin Oncol. 32:1020–1030. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Duraiswamy J, Freeman GJ and Coukos G:
Therapeutic PD-1 pathway blockade augments with other modalities of
immunotherapy T-cell function to prevent immune decline in ovarian
cancer. Cancer Res. 73:6900–6912. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Topalian SL, Drake CG and Pardoll DM:
Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor
immunity. Curr Opin Immunol. 24:207–212. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gozuacik D, Akkoc Y, Ozturk DG and Kocak
M: Autophagy-Regulating microRNAs and Cancer. Front Oncol.
7:652017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jasinski-Bergner S, Mandelboim O and
Seliger B: The role of microRNAs in the control of innate immune
response in cancer. J Natl Cancer Inst. 106(pii):
dju2572014.PubMed/NCBI
|
23
|
Atarod S and Dickinson AM: MicroRNAs: The
Missing Link in the Biology of Graft-Versus-Host Disease? Front
Immunol. 4:4202013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu XM and Zhang HJ: miRNAs as new
molecular insights into inflammatory bowel disease: Crucial
regulators in autoimmunity and inflammation. World J Gastroenterol.
22:2206–2218. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gong H, Cao Y, Han G, Zhang Y, You Q, Wang
Y and Pan Y.: p53/microRNA-374b/AKT1 regulates colorectal cancer
cell apoptosis in response to DNA damage. Int J Oncol.
50:1785–1791. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu X, Li S, Xu X, Wu S, Chen R, Jiang Q,
Li Y and Xu Y: The potential value of miR-1 and miR-374b as
biomarkers for colorectal cancer. Int J Clin Exp Pathol.
8:2840–2851. 2015.PubMed/NCBI
|
27
|
Hu S, Bao H, Xu X, Zhou X, Qin W, Zeng C
and Liu Z: Increased miR-374b promotes cell proliferation and the
production of aberrant glycosylated IgA1 in B cells of IgA
nephropathy. FEBS Lett. 589:4019–4025. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liao YY, Tsai HC, Chou PY, Wang SW, Chen
HT, Lin YM, Chiang IP, Chang TM, Hsu SK, Chou MC, et al: CCL3
promotes angiogenesis by dysregulation of miR-374b/VEGF-A axis in
human osteosarcoma cells. Oncotarget. 7:4310–4325. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ma Z, Sun X, Xu D, Xiong Y and Zuo B:
MicroRNA, miR-374b, directly targets Myf6 and negatively regulates
C2C12 myoblasts differentiation. Biochem Biophys Res Commun.
467:670–675. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Qian D, Chen K, Deng H, Rao H, Huang H,
Liao Y, Sun X, Lu S, Yuan Z, Xie D and Cai Q: MicroRNA-374b
suppresses proliferation and promotes apoptosis in T-cell
lymphoblastic lymphoma by repressing AKT1 and Wnt-16. Clin Cancer
Res. 21:4881–4891. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schreiber R, Mezencev R, Matyunina LV and
McDonald JF: Evidence for the role of microRNA 374b in acquired
cisplatin resistance in pancreatic cancer cells. Cancer Gene Ther.
23:241–245. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xie J, Tan ZH, Tang X, Mo MS, Liu YP, Gan
RL, Li Y, Zhang L and Li GQ: MiR-374b-5p suppresses RECK expression
and promotes gastric cancer cell invasion and metastasis. World J
Gastroenterol. 20:17439–17447. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C (T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Crispe IN: Hepatic T cells and liver
tolerance. Nat Rev Immunol. 3:51–62. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Protzer U, Maini MK and Knolle PA: Living
in the liver: Hepatic infections. Nat Rev Immunol. 12:201–213.
2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
McDermott DF and Atkins MB: PD-1 as a
potential target in cancer therapy. Cancer Med. 2:662–673.
2013.PubMed/NCBI
|
37
|
Thomson AW and Knolle PA:
Antigen-presenting cell function in the tolerogenic liver
environment. Nat Rev Immunol. 10:753–766. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Odorizzi PM, Pauken KE, Paley MA, Sharpe A
and Wherry EJ: Genetic absence of PD-1 promotes accumulation of
terminally differentiated exhausted CD8+ T cells. J Exp Med.
212:1125–1137. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Spranger S, Koblish HK, Horton B, Scherle
PA, Newton R and Gajewski TF: Mechanism of tumor rejection with
doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored
IL-2 production and proliferation of CD8(+) T cells directly within
the tumor microenvironment. J Immunother Cancer. 2:32014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Linedale R, Schmidt C, King BT, Ganko AG,
Simpson F, Panizza BJ and Leggatt GR: Elevated frequencies of CD8 T
cells expressing PD-1, CTLA-4 and Tim-3 within tumour from
perineural squamous cell carcinoma patients. PloS One.
12:e01757552017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu H, Wang Y, Zeng Q, Zeng YQ, Liang CL,
Qiu F, Nie H and Dai Z: Suppression of allograft rejection by
CD8+CD122+PD-1+ Tregs is dictated by their Fas ligand-initiated
killing of effector T cells versus Fas-mediated own apoptosis.
Oncotarget. 8:24187–24195. 2017.PubMed/NCBI
|
42
|
Schmittnaegel M, Rigamonti N, Kadioglu E,
Cassará A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller HJ, Ooi
CH, Laoui D and De Palma M: Dual angiopoietin-2 and VEGFA
inhibition elicits antitumor immunity that is enhanced by PD-1
checkpoint blockade. Sci Transl Med. 9(pii): eaak96702017.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Daskivich TJ and Belldegrun A: Words of
wisdom. Re: Safety, activity, and immune correlates of anti-PD-1
antibody in cancer. Eur Urol. 67:816–817. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hato T, Goyal L, Greten TF, Duda DG and
Zhu AX: Immune checkpoint blockade in hepatocellular carcinoma:
current progress and future directions. Hepatology. 60:1776–1782.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Yongchun Z, Linwei T, Xicai W, Lianhua Y,
Guangqiang Z, Ming Y, Guanjian L, Yujie L and Yunchao H:
MicroRNA-195 inhibits non-small cell lung cancer cell
proliferation, migration and invasion by targeting MYB. Cancer
Lett. 347:65–74. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Aleckovic M and Kang Y: Regulation of
cancer metastasis by cell-free miRNAs. Biochim Biophys Acta.
1855:24–42. 2015.PubMed/NCBI
|
48
|
Di Leva G, Garofalo M and Croce CM:
MicroRNAs in cancer. Annu Rev Pathol. 9:287–314. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang Y, Yang P and Wang XF:
Microenvironmental regulation of cancer metastasis by miRNAs.
Trends Cell Biol. 24:153–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mao B and Wang G: MicroRNAs involved with
hepatocellular carcinoma (Review). Oncol Rep. 34:2811–2820. 2015.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Giordano S and Columbano A: MicroRNAs: New
tools for diagnosis, prognosis, and therapy in hepatocellular
carcinoma? Hepatology. 57:840–847. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang G, Li N, Li Z, Zhu Q, Li F, Yang C,
Han Q, Lv Y, Zhou Z and Liu Z: microRNA-4717 differentially
interacts with its polymorphic target in the PD1 3′ untranslated
region: A mechanism for regulating PD-1 expression and function in
HBV-associated liver diseases. Oncotarget. 6:18933–18944.
2015.PubMed/NCBI
|