1
|
Sobhan MR, Forat Yazdi M, Mazaheri M, Zare
Shehneh M and Neamatzadeh H: Association between the DNA repair
gene XRCC3 rs861539 polymorphism and risk of osteosarcoma: A
systematic review and meta-analysis. Asian Pac J Cancer Prev.
18:549–555. 2017.PubMed/NCBI
|
2
|
Liu R, Fu C, Sun J, Wang X, Geng S, Wang
X, Zou J, Bi Z and Yang C: A new perspective for osteosarcoma
therapy: Proteasome inhibition by MLN9708/2238 successfully induces
apoptosis and cell cycle arrest and attenuates the invasion ability
of osteosarcoma cells in vitro. Cell Physiol Biochem. 41:451–465.
2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Colabufo NA, Contino M, Cantore M,
Capparelli E, Perrone MG, Cassano G, Gasparre G, Leopoldo M,
Berardi F and Perrone R: Naphthalenyl derivatives hitting for
P-gp/MRP1/BCRP transporters. Bioorg Med Chem. 21:1324–1332. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Coch L, Mejias M, Berzigotti A,
Garcia-Pras E, Gallego J, Bosch J, Mendez R and Fernandez M:
Disruption of negative feedback loop between vasohibin-1 and
vascular endothelial growth factor decreases portal pressure,
angiogenesis, and fibrosis in cirrhotic rats. Hepatology.
60:633–647. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Watanabe K, Hasegawa Y, Yamashita H,
Shimizu K, Ding Y, Abe M, Ohta H, Imagawa K, Hojo K, Maki H, et al:
Vasohibin as an endothelium-derived negative feedback regulator of
angiogenesis. J Clin Invest. 114:898–907. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miyashita H, Watanabe T, Hayashi H, Suzuki
Y, Nakamura T, Ito S, Ono M, Hoshikawa Y, Okada Y, Kondo T and Sato
Y: Angiogenesis inhibitor vasohibin-1 enhances stress resistance of
endothelial cells via induction of SOD2 and SIRT1. PLoS One.
7:e464592012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Miyashita H, Suzuki H, Ohkuchi A and Sato
Y: Mutual balance between vasohibin-1 and soluble VEGFR-1 in
endothelial cells. Pharmaceuticals. 4:782–793. 2011. View Article : Google Scholar
|
8
|
Liu S, Han B, Zhang Q, Dou J, Wang F, Lin
W, Sun Y and Peng G: Vasohibin-1 suppresses colon cancer.
Oncotarget. 6:7880–7898. 2015.PubMed/NCBI
|
9
|
Takahashi Y, Saga Y, Koyanagi T, Takei Y,
Machida S, Taneichi A, Mizukami H, Sato Y, Matsubara S and Fujiwara
H: The angiogenesis regulator vasohibin-1 inhibits ovarian cancer
growth and peritoneal dissemination and prolongs host survival. Int
J Oncol. 47:2057–2063. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang T, Yu TT, Zhang DM, Hou XM, Liu XJ,
Zhao D and Shan L: Vasohibin-1 expression detected by
immunohistochemistry correlates with prognosis in non-small cell
lung cancer. Med Oncol. 31:9632014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yan Y, Shen Z, Ye Y, Jiang K, Zhang H,
Shen C, Mustonen H, Puolakkainen P and Wang S: A novel molecular
marker of prognosis in colorectal cancer: Vasohibin-1. Med Oncol.
31:8162014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kern J, Steurer M, Gastl G, Gunsilius E
and Untergasser G: Vasohibin inhibits angiogenic sprouting in vitro
and supports vascular maturation processes in vivo. BMC Cancer.
9:2842009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao G, Yang Y, Tang Y, Han R and Sun Y:
Reduced expression of vasohibin-1 is associated with
clinicopathological features in renal cell carcinoma. Med Oncol.
29:3325–3334. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kitajima T, Toiyama Y, Tanaka K, Saigusa
S, Kobayashi M, Inoue Y, Mohri Y and Kusunoki M: Vasohibin-1
increases the malignant potential of colorectal cancer and is a
biomarker of poor prognosis. Anticancer Res. 34:5321–5329.
2014.PubMed/NCBI
|
15
|
He S, Shen J, Hu N, Xu X and Li J: DKK4
enhances resistance to chemotherapeutics 5-Fu and YN968D1 in
colorectal cancer cells. Oncol Lett. 13:587–592. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tandia M, Mhiri A, Paule B, Saffroy R,
Cailliez V, Noé G, Farinotti R and Bonhomme-Faivre L: Correlation
between clinical response to sorafenib in hepatocellular carcinoma
treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast
cancer resistance protein (ABCG2): Monocentric study. Cancer
Chemother Pharmacol. 79:759–766. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Esser L, Zhou F, Pluchino KM, Shiloach J,
Ma J, Tang WK, Gutierrez C, Zhang A, Shukla S, Madigan JP, et al:
Structures of the multidrug transporter P-glycoprotein reveal
asymmetric ATP binding and the mechanism of polyspecificity. J Biol
Chem. 292:446–461. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao M, Yu S and Zhang M: Differential
expression of multidrug resistance-related proteins in
Adriamycin-resistant (pumc-91/ADM) and parental (pumc-91) human
bladder cancer cell lines. Mol Med Rep. 14:4741–4746. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu YL, Maachani UB, Schweitzer M, Singh R,
Wang M, Chang R and Souweidane MM: Dual inhibition of PI3K/AKT and
MEK/ERK pathways induces synergistic antitumor effects in diffuse
intrinsic pontine glioma cells. Transl Oncol. 10:221–228. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang K, Gao K, Hu G, Wen Y, Lin C and Li
X: CTGF enhances resistance to 5-FU-mediating cell apoptosis
through FAK/MEK/ERK signal pathway in colorectal cancer. Onco
Targets Ther. 9:7285–7295. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xiao X, He Z, Cao W, Cai F, Zhang L, Huang
Q, Fan C, Duan C, Wang X, Wang J and Liu Y: Oridonin inhibits
gefitinib-resistant lung cancer cells by suppressing
EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways. Int J Oncol.
48:2608–2618. 2016. View Article : Google Scholar : PubMed/NCBI
|