Lymphatics-associated genes are downregulated at transcription level in non-small cell lung cancer
- Authors:
- Oksana Kowalczuk
- Jerzy Laudanski
- Wojciech Laudanski
- Wieslawa Ewa Niklinska
- Miroslaw Kozlowski
- Jacek Niklinski
-
Affiliations: Department of Clinical Molecular Biology, Medical University of Bialystok, 15‑269 Bialystok, Poland, Department of Thoracic Surgery, Medical University of Bialystok, 15‑269 Bialystok, Poland, Department of Histology and Embryology, Medical University of Bialystok, 15‑269 Bialystok, Poland - Published online on: March 2, 2018 https://doi.org/10.3892/ol.2018.8159
- Pages: 6752-6762
This article is mentioned in:
Abstract
Schulte-Merker S, Sabine A and Petrova TV: Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 193:607–618. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alitalo K, Tammela T and Petrova TV: Lymphangiogenesis in development and human disease. Nature. 438:946–953. 2005. View Article : Google Scholar : PubMed/NCBI | |
Achen MG, McColl BK and Stacker SA: Focus on lymphangiogenesis in tumor metastasis. Cancer Cell. 7:121–127. 2005. View Article : Google Scholar : PubMed/NCBI | |
Edge SB and Compton CC: The American joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alitalo A and Detmar M: Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene. 31:4499–4508. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stachura J, Wachowska M, Kilarski WW, Güç E, Golab J and Muchowicz A: The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development. Oncoimmunology. 5:e11822782016. View Article : Google Scholar : PubMed/NCBI | |
Shields JD: Lymphatics: At the interface of immunity, tolerance, and tumor metastasis. Microcirculation. 18:517–531. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, et al: Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 20:672–682. 2001. View Article : Google Scholar : PubMed/NCBI | |
Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K and Detmar M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 7:192–198. 2001. View Article : Google Scholar : PubMed/NCBI | |
Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H and Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 7:186–191. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL, Pytowski B, Fukumura D, Padera TP and Jain RK: Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: Therapeutic implications. Cancer Res. 66:8065–8075. 2006. View Article : Google Scholar : PubMed/NCBI | |
He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T and Alitalo K: Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 94:819–825. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE and Singh RK: Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res. 65:9004–9011. 2005. View Article : Google Scholar : PubMed/NCBI | |
Renyi-Vamos F, Tovari J, Fillinger J, Timar J, Paku S, Kenessey I, Ostoros G, Agocs L, Soltesz I and Dome B: Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res. 11:7344–7353. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miyahara M, Tanuma J, Sugihara K and Semba I: Tumor lymphangiogenesis correlates with lymph node metastasis and clinicopathologic parameters in oral squamous cell carcinoma. Cancer. 110:1287–1294. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nakamura Y, Yasuoka H, Tsujimoto M, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I and Kakudo K: Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat. 91:125–132. 2005. View Article : Google Scholar : PubMed/NCBI | |
Agarwal B, Saxena R, Morimiya A, Mehrotra S and Badve S: Lymphangiogenesis does not occur in breast cancer. Am J Surg Pathol. 29:1449–1455. 2005. View Article : Google Scholar : PubMed/NCBI | |
Van der Schaft DW, Pauwels P, Hulsmans S, Zimmermann M, van de Poll-Franse LV and Griffioen AW: Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site. Cancer Lett. 254:128–136. 2007. View Article : Google Scholar : PubMed/NCBI | |
Williams CS, Leek RD, Robson AM, Banerji S, Prevo R, Harris AL and Jackson DG: Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol. 200:195–206. 2003. View Article : Google Scholar : PubMed/NCBI | |
Trojan L, Michel MS, Rensch F, Jackson DG, Alken P and Grobholz R: Lymph and blood vessel architecture in benign and malignant prostatic tissue: Lack of lymphangiogenesis in prostate carcinoma assessed with novel lymphatic marker lymphatic vessel endothelial hyaluronan receptor (LYVE-1). J Urol. 172:103–107. 2004. View Article : Google Scholar : PubMed/NCBI | |
Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Gatter KC, Harris AL and Jackson DG: LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol. 58:202–206. 2005. View Article : Google Scholar : PubMed/NCBI | |
Steinskog ES, Sagstad SJ, Wagner M, Karlsen TV, Yang N, Markhus CE, Yndestad S, Wiig H and Eikesdal HP: Impaired lymphatic function accelerates cancer growth. Oncotarget. 7:45789–45802. 2016. View Article : Google Scholar : PubMed/NCBI | |
Achen MG and Stacker SA: Molecular control of lymphatic metastasis. Ann N Y Acad Sci. 1131:225–234. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hirakawa S: Regulation of pathological lymphangiogenesis requires factors distinct from those governing physiological lymphangiogenesis. J Dermatol Sci. 61:85–93. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zheng W, Aspelund A and Alitalo K: Lymphangiogenic factors, mechanisms, and applications. J Clin Invest. 124:878–887. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoshimatsu Y, Miyazaki H and Watabe T: Roles of signaling and transcriptional networks in pathological lymphangiogenesis. Adv Drug Deliv Rev. 99:161–171. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sobin LH and Compton CC: TNM seventh edition: What's new, what's changed: Communication from the international union against cancer and the American joint committee on cancer. Cancer. 116:5336–5339. 2010. View Article : Google Scholar : PubMed/NCBI | |
Niklinski J, Kretowski A, Moniuszko M, Reszec J, Michalska-Falkowska A, Niemira M, Ciborowski M, Charkiewicz R, Jurgilewicz D, Kozlowski M, et al: Systematic biobanking, novel imaging techniques, and advanced molecular analysis for precise tumor diagnosis and therapy: The Polish MOBIT project. Adv Med Sci. 62:405–413. 2017. View Article : Google Scholar : PubMed/NCBI | |
Endoh H, Tomida S, Yatabe Y, Konishi H, Osada H, Tajima K, Kuwano H, Takahashi T and Mitsudomi T: Prognostic model of pulmonary adenocarcinoma by expression profiling of eight genes as determined by quantitative real-time reverse transcriptase polymerase chain reaction. J Clin Oncol. 22:811–819. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1118. 2008. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Siegel RL and Jemal A: Lung Cancer Statistics. Adv Exp Med Biol. 893:1–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Detterbeck FC, Postmus PE and Tanoue LT: The stage classification of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 143 5 Suppl:e191S–e210S. 2013. View Article : Google Scholar : PubMed/NCBI | |
Albrecht I and Christofori G: Molecular mechanisms of lymphangiogenesis in development and cancer. Int J Dev Biol. 55:483–494. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gomes FG, Nedel F, Alves AM, Nör JE and Tarquinio SB: Tumor angiogenesis and lymphangiogenesis: Tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci. 92:101–107. 2013. View Article : Google Scholar : PubMed/NCBI | |
Regan E, Sibley RC, Cenik BK, Silva A, Girard L, Minna JD and Dellinger MT: Identification of gene expression differences between lymphangiogenic and non-lymphangiogenic non-small cell lung cancer cell lines. PLoS One. 11:e01509632016. View Article : Google Scholar : PubMed/NCBI | |
Jackson DG: Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS. 112:526–538. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Du Y, Liu Y, He Y, Yang C, Wang W and Gao F: Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways. PLoS One. 9:e928572014. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Liu NF: FOXC2 transcription factor: A novel regulator of lymphangiogenesis. Lymphology. 44:35–41. 2011.PubMed/NCBI | |
Pan Y and Xia L: Emerging roles of podoplanin in vascular development and homeostasis. Front Med. 9:421–430. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baluk P and McDonald DM: Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci. 1131:1–12. 2008. View Article : Google Scholar : PubMed/NCBI | |
Elsir T, Smits A, Lindström MS and Nistér M: Transcription factor PROX1: Its role in development and cancer. Cancer Metastasis Rev. 31:793–805. 2012. View Article : Google Scholar : PubMed/NCBI | |
Watabe T: Roles of transcriptional network during the formation of lymphatic vessels. J Biochem. 152:213–220. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sanmartín E, Sirera R, Usó M, Blasco A, Gallach S, Figueroa S, Martínez N, Hernando C, Honguero A, Martorell M, et al: A gene signature combining the tissue expression of three angiogenic factors is a prognostic marker in early-stage non-small cell lung cancer. Ann Surg Oncol. 21:612–620. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takizawa H, Kondo K, Fujino H, Kenzaki K, Miyoshi T, Sakiyama S and Tangoku A: The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer. Br J Cancer. 95:75–79. 2006. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Wang W, Hu J, Ma J, Zhang Y and Zhang J: Expression of VEGF-C and VEGF-D as significant markers for assessment of lymphangiogenesis and lymph node metastasis in non-small cell lung cancer. Anat Rec (Hoboken). 293:802–812. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maekawa S, Iwasaki A, Shirakusa T, Enatsu S, Kawakami T and Kuroki M and Kuroki M: Correlation between lymph node metastasis and the expression of VEGF-C, VEGF-D and VEGFR-3 in T1 lung adenocarcinoma. Anticancer Res. 27:3735–3741. 2007.PubMed/NCBI | |
Li J, Yi H, Liu Z, Zhang H, Zhang D, Yue W, Jia H, Xu S and Li B: Association between VEGFR-3 expression and lymph node metastasis in non-small-cell lung cancer. Exp Ther Med. 9:389–394. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kilvaer TK, Paulsen EE, Hald SM, Wilsgaard T, Bremnes RM, Busund LT and Donnem T: Lymphangiogenic markers and their impact on nodal metastasis and survival in non-small cell lung cancer-a structured review with meta analysis. PLoS One. 10:e01324812015. View Article : Google Scholar : PubMed/NCBI | |
Zheng CL, Qiu C, Shen MX, Qu X, Zhang TH, Zhang JH and Du JJ: Prognostic impact of elevation of vascular endothelial growth factor family expression in patients with non-small cell lung cancer: An updated meta-analysis. Asian Pac J Cancer Prev. 16:1881–1895. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Luo G, Tang H, Cheng C and Wang P: Prognostic significance of high VEGF-C expression for patients with breast cancer: An update meta analysis. PLoS One. 11:e01657252016. View Article : Google Scholar : PubMed/NCBI | |
Zong S, Li H, Shi Q, Liu S, Li W and Hou F: Prognostic significance of VEGF-C immunohistochemical expression in colorectal cancer: A meta-analysis. Clin Chim Acta. 458:106–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Shen J, Chen S, Huang H, Xu Y and Ma H: Overexpression of VEGF-C correlates with a poor prognosis in esophageal cancer patients. Cancer Biomark. 17:165–170. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kato S, Shimoda H, Ji RC and Miura M: Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers. Anat Sci Int. 81:71–83. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jackson DG: Immunological functions of hyaluronan and its receptors in the lymphatics. Immunol Rev. 230:216–231. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ugorski M, Dziegiel P and Suchanski J: Podoplanin-a small glycoprotein with many faces. Am J Cancer Res. 6:370–386. 2016.PubMed/NCBI | |
Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM, Gliksman M, Goy A and Suh KS: Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 7:44735–44762. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kowalczyk AP and Green KJ: Structure, function, and regulation of desmosomes. Prog Mol Biol Transl Sci. 116:95–183. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huber O and Petersen I: 150th anniversary series: Desmosomes and the hallmarks of cancer. Cell Commun Adhes. 22:15–28. 2015. View Article : Google Scholar : PubMed/NCBI | |
Krisenko MO and Geahlen RL: Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. Biochim Biophys Acta. 1853:254–263. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D and Makinen T: Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell. 17:175–186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rizzolio S and Tamagnone L: Multifaceted role of neuropilins in cancer. Curr Med Chem. 18:3563–3575. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zachary I: Neuropilins: Role in signalling, angiogenesis and disease. Chem Immunol Allergy. 99:37–70. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sasahira T, Ueda N, Yamamoto K, Kurihara M, Matsushima S, Bhawal UK, Kirita T and Kuniyasu H: Prox1 and FOXC2 act as regulators of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma. PLoS One. 9:e925342014. View Article : Google Scholar : PubMed/NCBI | |
Prud'homme GJ and Glinka Y: Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget. 3:921–939. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Fan H, Qian C, Ding J, Wang Q and Pang X: Prognostic value of high FoxC2 expression in resectable non-small cell lung cancer, alone or in combination with E-cadherin expression. BMC Cancer. 16:162016. View Article : Google Scholar : PubMed/NCBI | |
Zhu JL, Song YX, Wang ZN, Gao P, Wang MX, Dong YL, Xing CZ and Xu HM: The clinical significance of mesenchyme forkhead 1 (FoxC2) in gastric carcinoma. Histopathology. 62:1038–1048. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nishida N, Mimori K, Yokobori T, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y and Mori M: FOXC2 is a novel prognostic factor in human esophageal squamous cell carcinoma. Ann Surg Oncol. 18:535–542. 2011. View Article : Google Scholar : PubMed/NCBI | |
Skog M, Bono P, Lundin M, Lundin J, Louhimo J, Linder N, Petrova TV, Andersson LC, Joensuu H, Alitalo K and Haglund CH: Expression and prognostic value of transcription factor PROX1 in colorectal cancer. Br J Cancer. 105:1346–1351. 2011. View Article : Google Scholar : PubMed/NCBI | |
Versmold B, Felsberg J, Mikeska T, Ehrentraut D, Köhler J, Hampl JA, Röhn G, Niederacher D, Betz B, Hellmich M, et al: Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. Int J Cancer. 121:547–554. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schneider M, Büchler P, Giese N, Giese T, Wilting J, Büchler MW and Friess H: Role of lymphangiogenesis and lymphangiogenic factors during pancreatic cancer progression and lymphatic spread. Int J Oncol. 28:883–890. 2006.PubMed/NCBI | |
Juchniewicz A, Niklińska W, Kowalczuk O, Laudański W, Sulewska A, Dziegielewski P, Milewski R, Naumnik W, Kozłowski M and Nikliński J: Prognostic value of vascular endothelial growth factor-C and podoplanin mRNA expression in esophageal cancer. Oncol Lett. 10:3668–3674. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kadota K, Huang CL, Liu D, Nakashima N, Yokomise H, Ueno M and Haba R: The clinical significance of the tumor cell D2-40 immunoreactivity in non-small cell lung cancer. Lung Cancer. 70:88–93. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shimada Y, Ishii G, Nagai K, Atsumi N, Fujii S, Yamada A, Yamane Y, Hishida T, Nishimura M, Yoshida J, et al: Expression of podoplanin, CD44, and p63 in squamous cell carcinoma of the lung. Cancer Sci. 100:2054–2059. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Ishii G, Nagai K, Nagano T, Kojika M, Murata Y, Atsumi N, Nishiwaki Y, Miyazaki E, Kumamoto T and Ochiai A: Low podoplanin expression of tumor cells predicts poor prognosis in pathological stage IB squamous cell carcinoma of the lung, tissue microarray analysis of 136 patients using 24 antibodies. Lung Cancer. 63:418–424. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ikoma Y, Kijima H, Masuda R, Tanaka M, Inokuchi S and Iwazaki M: Podoplanin expression is correlated with the prognosis of lung squamous cell carcinoma. Biomed Res. 36:393–402. 2015. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Onimaru M, Yonemitsu Y, Maehara Y, Nakamura S and Sueishi K: Podoplanin in cancer cells is experimentally able to attenuate prolymphangiogenic and lymphogenous metastatic potentials of lung squamoid cancer cells. Mol Cancer. 9:2872010. View Article : Google Scholar : PubMed/NCBI | |
Kawakami T, Tokunaga T, Hatanaka H, Kijima H, Yamazaki H, Abe Y, Osamura Y, Inoue H, Ueyama Y and Nakamura M: Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer. 95:2196–2201. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hicklin DJ and Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 23:1011–1027. 2005. View Article : Google Scholar : PubMed/NCBI | |
Donnem T, Al-Saad S, Al-Shibli K, Delghandi MP, Persson M, Nilsen MN, Busund LT and Bremnes RM: Inverse prognostic impact of angiogenic marker expression in tumor cells versus stromal cells in non small cell lung cancer. Clin Cancer Res. 13:6649–6657. 2007. View Article : Google Scholar : PubMed/NCBI | |
Donnem T, Al-Shibli K, Al-Saad S, Delghandi MP, Busund LT and Bremnes RM: VEGF-A and VEGFR-3 correlate with nodal status in operable non-small cell lung cancer: Inverse correlation between expression in tumor and stromal cells. Lung Cancer. 63:277–283. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shahneh FZ, Baradaran B, Zamani F and Aghebati-Maleki L: Tumor angiogenesis and anti-angiogenic therapies. Hum Antibodies. 22:15–19. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N: Role of myeloid cells in vascular endothelial growth factor-independent tumor angiogenesis. Curr Opin Hematol. 17:219–224. 2010.PubMed/NCBI | |
Zhao Y and Adjei A: Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist. 20:660–673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC and Pezzella F: Vessel co-option in primary human tumors and metastases: An obstacle to effective anti-angiogenic treatment? Cancer Med. 2:427–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, Nathan MR, Wan E, Frentzas S, Schweiger T, et al: Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 241:362–374. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vieira JM, Ruhrberg C and Schwarz Q: VEGF receptor signaling in vertebrate development. Organogenesis. 6:97–106. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang SD, McCrudden CM and Kwok HF: Prognostic significance of combining VEGFA, FLT1 and KDR mRNA expression in lung cancer. Oncol Lett. 10:1893–1901. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pajares MJ, Agorreta J, Larrayoz M, Vesin A, Ezponda T, Zudaire I, Torre W, Lozano MD, Brambilla E, Brambilla C, et al: Expression of tumor-derived vascular endothelial growth factor and its receptors is associated with outcome in early squamous cell carcinoma of the lung. J Clin Oncol. 30:1129–1136. 2012. View Article : Google Scholar : PubMed/NCBI |