1
|
Patel C, Ahmed A and Ellsworth P: Renal
cell carcinoma: A reappraisal. Urol Nurs. 32:182–190.
2012.PubMed/NCBI
|
2
|
Saito K and Kihara K: Role of C-reactive
protein as a biomarker for renal cell carcinoma. Exp Rev Anticancer
Ther. 10:1979–1989. 2010. View Article : Google Scholar
|
3
|
Crispen PL, Boorjian SA, Lohse CM,
Leibovich BC and Kwon ED: Predicting disease progression after
nephrectomy for localized renal cell carcinoma: The utility of
prognostic models and molecular biomarkers. Cancer. 113:450–460.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zisman A, Pantuck AJ, Wieder J, Chao DH,
Dorey F, Said JW, deKernion JB, Figlin RA and Belldegrun AS: Risk
group assessment and clinical outcome algorithm to predict the
natural history of patients with surgically resected renal cell
carcinoma. J Clin Oncol. 20:4559–4566. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tran Q, Lee H and Park J, Kim SH and Park
J: Targeting cancer metabolism-revisiting the Warburg effects.
Toxicol Res. 32:177–193. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Deberardinis RJ, Sayed N, Ditsworth D and
Thompson CB: Brick by brick: Metabolism and tumor cell growth. Curr
Opin Genet Dev. 18:54–61. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jiang Z, Liu X, Chang K, Liu X and Xiong
J: Allyl isothiocyanate inhibits the proliferation of renal
carcinoma cell line GRC-1 by inducing an imbalance between Bcl2 and
bax. Med Sci Monit. 22:4283–4288. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pinto F, Campanella NC, Abrahão-Machado
LF, Scapulatempo-Neto C, de Oliveira AT, Brito MJ, Andrade RP,
Guimarães DP and Reis RM: The embryonic Brachyury transcription
factor is a novel biomarker of GIST aggressiveness and poor
survival. Gastric Cancer. 19:651–659. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang H, Liu C, Han J, Zhen L, Zhang T, He
X, Xu E and Li M: HER2 expression in renal cell carcinoma is rare
and negatively correlated with that in normal renal tissue. Oncol
Lett. 4:194–198. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yi X, Pashaj A, Xia M and Moreau R:
Reversal of obesity-induced hypertriglyceridemia by (R)-α-lipoic
acid in ZDF (fa/fa) rats. Biochem Biophys Res Commun. 439:390–395.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fuhrman SA, Lasky LC and Limas C:
Prognostic significance of morphologic parameters in renal cell
carcinoma. Am J Surg Pathol. 6:655–663. 1982. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cantor JR and Sabatini DM: Cancer cell
metabolism: One hallmark, many faces. Cancer Discov. 2:881–898.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ward PS and Thompson CB: Metabolic
reprogramming: A cancer hallmark even Warburg did not anticipate.
Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wittig R and Coy JF: The role of glucose
metabolism and glucose-associated signalling in cancer. Perspect
Medicin Chem. 1:64–82. 2008.PubMed/NCBI
|
16
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lucarelli G, Galleggiante V, Rutigliano M,
Sanguedolce F, Cagiano S, Bufo P, Lastilla G, Maiorano E, Ribatti
D, Giglio A, et al: Metabolomic profile of glycolysis and the
pentose phosphate pathway identifies the central role of
glucose-6-phosphate dehydrogenase in clear cell-renal cell
carcinoma. Oncotarget. 6:13371–13386. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tomlinson IP, Alam NA, Rowan AJ, Barclay
E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S, et
al: Germline mutations in FH predispose to dominantly inherited
uterine fibroids, skin leiomyomata and papillary renal cell cancer.
Nat Genet. 30:406–410. 2002. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Ricketts CJ, Shuch B, Vocke CD, Metwalli
AR, Bratslavsky G, Middelton L, Yang Y, Wei MH, Pautler SE,
Peterson J, et al: Succinate dehydrogenase kidney cancer: An
aggressive example of the Warburg effect in cancer. J Urol.
188:2063–2071. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hatzivassiliou G, Zhao F, Bauer DE,
Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA and
Thompson CB: ATP citrate lyase inhibition can suppress tumor cell
growth. Cancer Cell. 8:311–321. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Massari F, Ciccarese C, Santoni M,
Brunelli M, Piva F, Modena A, Bimbatti D, Fantinel E, Santini D,
Cheng L, et al: Metabolic alterations in renal cell carcinoma.
Cancer Treat Rev. 41:767–776. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dufort FJ, Gumina MR, Ta NL, Tao Y, Heyse
SA, Scott DA, Richardson AD, Seyfried TN and Chiles TC:
Glucose-dependent de novo lipogenesis in B lymphocytes: A
requirement for atp-citrate lyase in lipopolysaccharide-induced
differentiation. J Biol Chem. 289:7011–7024. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lucenay KS, Doostan I, Karakas C, Bui T,
Ding Z, Mills GB, Hunt KK and Keyomarsi K: Cyclin E associates with
the lipogenic enzyme ATP-citrate lyase to enable malignant growth
of breast cancer cells. Cancer Res. 76:2406–2418. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tyszka-Czochara M, Konieczny P and Majka
M: Caffeic acid expands anti-tumor effect of metformin in human
metastaticcervical carcinoma HTB-34 cells: Implications of AMPK
activation andimpairment of fatty acids de novo biosynthesis. Int J
Mol Sci. 18:E4622017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jones JE, Esler WP, Patel R, Lanba A, Vera
NB, Pfefferkorn JA and Vernochet C: Inhibition of acetyl-coa
carboxylase 1 (ACC1) and 2 (ACC2) reduces proliferation and de novo
lipogenesis of EGFRvIII human glioblastoma cells. PLoS One.
12:e01695662017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Neely AM, Zhao G, Schwarzer C, Stivers NS,
Whitt AG, Meng S, Burlison JA, Machen TE and Li C:
N-(3-oxo-acyl)-homoserine lactone induces apoptosis primarily
through amitochondrial pathway in fibroblasts. Cell Microbiol.
20:2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Migita T, Narita T, Nomura K, Miyagi E,
Inazuka F, Matsuura M, Ushijima M, Mashima T, Seimiya H, Satoh Y,
et al: ATP citrate lyase: Activation and therapeutic implications
in non-small cell lung cancer. Cancer Res. 68:8547–8554. 2008.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Gentile Londono T, Lu C, Lodato PM, Tse S,
Olejniczak SH, Witze ES, Thompson CB and Wellen KE: DNMT1 is
regulated by ATP-citrate lyase and maintains methylation patterns
during adipocyte differentiation. Mol Cell Bio. 33:3864–3878. 2013.
View Article : Google Scholar
|
30
|
Migita T, Okabe S, Ikeda K, Igarashi S,
Sugawara S, Tomida A, Soga T, Taguchi R and Seimiya H: Inhibition
of ATP citrate lyase induces triglyceride accumulation with altered
fatty acid composition in cancer cells. Int J Cancer. 135:37–47.
2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xin M, Qiao Z, Li J, Liu J, Song S, Zhao
X, Miao P, Tang T, Wang L, Liu W, et al: miR-22 inhibits tumor
growth and metastasis by targeting ATP citrate lyase: Evidence in
osteosarcoma, prostate cancer, cervical cancer and lung cancer.
Oncotarget. 7:44252–44265. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tyszka-Czochara M, Konieczny P and Majka
M: Caffeic acid expands anti-tumor effect of metformin in human
metastaticcervical carcinoma HTB-34 cells: Implications of AMPK
activation andimpairment of fatty acids de novo biosynthesis. Int J
Mol Sci. 18:pii: E462. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lucenay KS, Doostan I, Karakas C, Bui T,
Ding Z, Mills GB, Hunt KK and Keyomarsi K: Cyclin E associates with
the lipogenic enzyme ATP-citrate lyase to enable malignant growth
of breast cancer cells. Cancer Res. 76:2406–2418. 2015. View Article : Google Scholar
|