1
|
Adams JM and Cory S: The Bcl-2 protein
family: Arbiters of cell survival. Science. 281:1322–1326. 1998.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Oakes SR, Vaillant F, Lim E, Lee L,
Breslin K, Feleppa F, Deb S, Ritchie ME, Takano E, Ward T, et al:
Sensitization of BCL-2-expressing breast tumors to chemotherapy by
the BH3 mimetic ABT-737. Proc Natl Acad Sci USA. 109:2766–2771.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Emi M, Kim R, Tanabe K, Uchida Y and Toge
T: Targeted therapy against Bcl-2-related proteins in breast cancer
cells. Breast Cancer Res. 7:R940–R952. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Young AI, Law AM, Castillo L, Chong S,
Cullen HD, Koehler M, Herzog S, Brummer T, Lee EF, Fairlie WD, et
al: MCL-1 inhibition provides a new way to suppress breast cancer
metastasis and increase sensitivity to dasatinib. Breast Cancer
Res. 18:1252016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bah N, Maillet L, Ryan J, Dubreil S,
Gautier F, Letai A, Juin P and Barillé-Nion S: Bcl-xL controls a
switch between cell death modes during mitotic arrest. Cell Death
Dis. 5:e12912014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Oltersdorf T, Elmore SW, Shoemaker AR,
Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges
J, Hajduk PJ, et al: An inhibitor of Bcl-2 family proteins induces
regression of solid tumours. Nature. 435:677–681. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kaefer A, Yang J, Noertersheuser P,
Mensing S, Humerickhouse R, Awni W and Xiong H: Mechanism-based
pharmacokinetic/pharmacodynamic meta-analysis of navitoclax
(ABT-263) induced thrombocytopenia. Cancer Chemother Pharmac.
74:593–602. 2014. View Article : Google Scholar
|
8
|
Roberts AW, Davids MS, Pagel JM, Kahl BS,
Puvvada SD, Gerecitano JF, Kipps TJ, Anderson MA, Brown JR,
Gressick L, et al: Targeting BCL2 with venetoclax in relapsed
chronic lymphocytic leukemia. N Engl J Med. 374:311–322. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen L and Fletcher S: Mcl-1 inhibitors: A
patent review. Expert Opin Ther Pat. 27:163–178. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Goodall ML, Fitzwalter BE, Zahedi S, Wu M,
Rodriguez D, Mulcahy-Levy JM, Green DR, Morgan M, Cramer SD and
Thorburn A: The autophagy machinery controls cell death switching
between apoptosis and necroptosis. Dev Cell. 37:337–349. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Maiuri MC, Zalckvar E, Kimchi A and
Kroemer G: Self-eating and self-killing: Crosstalk between
autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Pattingre S, Tassa A, Qu X, Garuti R,
Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2
antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell.
122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pattingre S and Levine B: Bcl-2 inhibition
of autophagy: A new route to cancer? Cancer Res. 66:2885–2888.
2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Maiuri MC, Le Toumelin G, Criollo A, Rain
JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K,
Tavernarakis N, et al: Functional and physical interaction between
Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26:2527–2539.
2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lin J, Zheng Z, Li Y, Yu W, Zhong W, Tian
S, Zhao F, Ren X, Xiao J, Wang N, et al: A novel Bcl-XL inhibitor
Z36 that induces autophagic cell death in Hela cells. Autophagy.
5:314–320. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ullman E, Fan Y, Stawowczyk M, Chen HM,
Yue Z and Zong WX: Autophagy promotes necrosis in
apoptosis-deficient cells in response to ER stress. Cell Death
Differ. 15:422–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mariño G, Niso-Santano M, Baehrecke EH and
Kroemer G: Self-consumption: The interplay of autophagy and
apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Samara C, Syntichaki P and Tavernarakis N:
Autophagy is required for necrotic cell death in Caenorhabditis
elegans. Cell Death Differ. 15:105–112. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cao X, Yap JL, Newell-Rogers MK,
Peddaboina C, Jiang W, Papaconstantinou HT, Jupitor D, Rai A, Jung
KY, Tubin RP, et al: The novel BH3 α-helix mimetic JY-1-106 induces
apoptosis in a subset of cancer cells (lung cancer, colon cancer
and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein-protein
interactions with Bak. Mol Cancer. 12:422013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang J, Ikezoe T, Nishioka C and Yokoyama
A: Over-expression of Mcl-1 impairs the ability of ATRA to induce
growth arrest and differentiation in acute promyelocytic leukemia
cells. Apoptosis. 18:1403–1415. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kharbanda S, Saxena S, Yoshida K, Pandey
P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, et al:
Translocation of SAPK/JNK to mitochondria and interaction with
Bcl-x(L) in response to DNA damage. J Biol Chem. 275:322–327. 2000.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Perri M, Pingitore A, Cione E, Vilardi E,
Perrone V and Genchi G: Proliferative and anti-proliferative
effects of retinoic acid at doses similar to endogenous levels in
Leydig MLTC-1/R2C/TM-3 cells. Biochim Biophys Acta. 1800:993–1001.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chambon P: The retinoid signaling pathway:
Molecular and genetic analyses. J Biol Chem. 5:115–125. 1994.
|
24
|
Bonofiglio D, Cione E, Qi H, Pingitore A,
Perri M, Catalano S, Vizza D, Panno ML, Genchi G, Fuqua SA and Andò
S: Combined low doses of PPARgamma and RXR ligands trigger an
intrinsic apoptotic pathway in human breast cancer cells. Am J
Pathol. 175:1270–1280. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bonofiglio D, Cione E, Vizza D, Perri M,
Pingitore A, Qi H, Catalano S, Rovito D, Genchi G and Andò S: Bid
as a potential target of apoptotic effects exerted by low doses of
PPARγ and RXR ligands in breast cancer cells. Cell Cycle.
10:2344–2354. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bosch A, Bertran SP, Lu Y, Garcia A, Jones
AM, Dawson MI and Farias EF: Reversal by RARα agonist Am580 of
c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc
tumorigenesis. Breast Cancer Res. 14:R1212012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chavez KJ, Garimella SV and Lipkowitz S:
Triple negative breast cancer cell lines: One tool in the search
for better treatment of triple negative breast cancer. Breast Dis.
32:35–48. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Foulkes WD, Smith IE and Reis-Filho JS:
Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu X, Tang H, Chen J, Song C, Yang L, Liu
P, Wang N and Xie X, Lin X and Xie X: MicroRNA-101 inhibits cell
progression and increases paclitaxel sensitivity by suppressing
MCL-1 expression in human triple-negative breast cancer.
Oncotarget. 6:20070–20083. 2015.PubMed/NCBI
|
30
|
Alsabeh R, Wilson CS, Ahn CW, Vasef MA and
Battifora H: Expression of bcl-2 by breast cancer: A possible
diagnostic application. Mod Pathol. 9:439–444. 1996.PubMed/NCBI
|
31
|
Edinger AL and Thompson CB: Death by
design: Apoptosis, necrosis and autophagy. Curr Opin Cell Biol.
16:663–669. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kanduc D, Mittelman A, Serpico R,
Sinigaglia E, Sinha AA, Natale C, Santacroce R, Di Corcia MG,
Lucchese A, Dini L, et al: Cell death: Apoptosis versus necrosis
(review). Int J Oncol. 21:165–170. 2002.PubMed/NCBI
|
33
|
Sheikh MS, Shao ZM, Chen JC, Hussain A,
Jetten AM and Fontana JA: Estrogen receptor-negative breast cancer
cells transfected with the estrogen receptor exhibit increased RAR
alpha gene expression and sensitivity to growth inhibition by
retinoic acid. J Cell Biochem. 53:394–404. 1993. View Article : Google Scholar : PubMed/NCBI
|
34
|
Perri M, Yap JL, Yu J, Cione E, Fletcher S
and Kane MA: BCL-xL/MCL-1 inhibition and RARγ antagonism work
cooperatively in human HL60 leukemia cells. Exp Cell Res.
327:183–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Riley T, Sontag E, Chen P and Levine A:
Transcriptional control of human p53-regulated genes. Nat Rev Mol
Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vaseva AV, Marchenko ND, Ji K, Tsirka SE,
Holzmann S and Moll UM: p53 opens the mitochondrial permeability
transition pore to trigger necrosis. Cell. 149:1536–1548. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Bartek J, Iggo R, Gannon J and Lane DP:
Genetic and immunochemical analysis of mutant p53 in human breast
cancer cell lines. Oncogene. 5:893–899. 1990.PubMed/NCBI
|
38
|
Wright JD and Lim C: Mechanism of
DNA-binding loss upon single-point mutation in p53. J Biosci.
32:827–839. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sheikh MS, Shao ZM, Li XS, Dawson M,
Jetten AM, Wu S, Conley BA, Garcia M, Rochefort H and Fontana JA:
Retinoid-resistant estrogen receptor-negative human breast
carcinoma cells transfected with retinoic acid receptor-alpha
acquire sensitivity to growth inhibition by retinoids. J Biol Chem.
269:21440–21447. 1994.PubMed/NCBI
|
40
|
Amaravadi RK and Thompson CB: The roles of
therapy-induced autophagy and necrosis in cancer treatment. Clin
Cancer Res. 13:7271–7279. 2007. View Article : Google Scholar : PubMed/NCBI
|